Страница:
<< 53 54 55 56
57 58 59 >> [Всего задач: 329]
|
|
Сложность: 4+ Классы: 9,10
|
Точка D лежит на основании BC равнобедренного треугольника ABC, а точки M и K – на его боковых сторонах AB и AC соответственно, причём AMDK – параллелограмм. Прямые MK и BC пересекаются в точке L. Перпендикуляр к BC, восставленный из точки D, пересекает прямые AB и AC в точках X и Y соответственно. Докажите, что окружность с центром L, проходящая через D, касается описанной окружности треугольника AXY.
|
|
Сложность: 4+ Классы: 9,10
|
На плоскости даны две концентрические окружности с центром в
точке
A . Пусть
B — произвольная точка одной из этих
окружностей,
C — другой. Для каждого треугольника
ABC
рассмотрим две окружности одинакового радиуса, касающиеся друг
друга в точке
K , причем одна окружность касается прямой
AB в
точке
B , а другая — прямой
AC в точке
C . Найдите ГМТ
K .
Внутри выпуклого четырёхугольника расположены четыре
окружности, каждая из которых касается двух соседних сторон
четырёхугольника и двух окружностей (внешним образом). Известно,
что в четырёхугольник можно вписать окружность. Докажите, что по
крайней мере две из данных окружностей равны.
|
|
Сложность: 4+ Классы: 9,10,11
|
Равные окружности
S1 и
S2 касаются окружности
S
внутренним образом в точках
A1 и
A2. Произвольная
точка
C окружности
S соединена отрезками с точками
A1
и
A2. Эти отрезки пересекают
S1 и
S2 в точках
B1 и
B2.
Докажите, что
A1A2|
B1B2.
|
|
Сложность: 4+ Классы: 9,10,11
|
В угол с вершиной $C$ вписана окружность $\omega$. Рассматриваются окружности, проходящие через $C$, касающиеся $\omega$ внешним образом и пересекающие стороны угла в точках $A$ и $B$. Докажите, что периметры всех треугольников $ABC$ равны.
Страница:
<< 53 54 55 56
57 58 59 >> [Всего задач: 329]