ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Четырехугольники
>>
Трапеции
>>
Равнобедренные, вписанные и описанные трапеции
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На диагонали AC выпуклого четырёхугольника ABCD находится центр окружности радиуса r, касающейся сторон AB, AD и BC. На диагонали BD находится центр окружности такого же радиуса r, касающейся сторон BC, CD и AD. Найдите площадь четырёхугольника ABCD, зная, что указанные окружности касаются друг друга внешним образом. Решение |
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 292]
На одной стороне угла O взяты точки K, L, M, а на другой – точки P, Q, R так, что KQ ⊥ PR, PL ⊥ KM, LR ⊥ PQ, QM ⊥ KL. Отношение расстояния от центра описанной вокруг четырёхугольника KPRM окружности до точки O к длине отрезка KP равно 17/6. Найдите величину угла O.
На диагонали AC выпуклого четырёхугольника ABCD находится центр окружности радиуса r, касающейся сторон AB, AD и BC. На диагонали BD находится центр окружности такого же радиуса r, касающейся сторон BC, CD и AD. Найдите площадь четырёхугольника ABCD, зная, что указанные окружности касаются друг друга внешним образом.
Пусть M – точка пересечения диагоналей выпуклого четырёхугольника ABCD, в котором стороны AB, AD и BC равны между собой.
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 292] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|