Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 603]
Даны две окружности одинакового радиуса. Они пересекаются в точках A и B. Через точку A проведена их общая секущая, пересекающая окружности ещё в точках C и D. Через точку B проведена прямая, перпендикулярная этой секущей. Она пересекает окружности еще в точках E и F.
Докажите, что точки C, E, D и F – вершины ромба.
Дан треугольник ABC. На стороне BC взята точка P, а на
стороне AC взята точка M, причём ∠APB = ∠BMA = 45°. Отрезки AP и BM пересекаются в точке O. Известно,что площади треугольников BOP и AOM равны между собой, BC = 1, BO = . Найдите площадь треугольника ABC.
Прямая пересекает боковую сторону AC, основание BC и продолжение боковой стороны AB равнобедренного треугольника ABC за точку B в точках K, L и M соответственно. При этом треугольники
CKL и BML также равнобедренные. Найдите их углы.
Пусть AE и CD – биссектрисы треугольника ABC. Докажите, что если ∠BDE : ∠EDC = ∠BED : ∠DEA, то треугольник ABC — равнобедренный.
На продолжении основания равнобедренного треугольника взята точка. Докажите, что разность расстояний от этой точки до прямых, содержащих боковые стороны треугольника, равна высоте, опущенной на боковую сторону.
Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 603]