ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Через точку O пересечения биссектрис треугольника ABC проведены прямые, параллельные его сторонам. Прямая, параллельная AB, пересекает AC и BC в точках M и N, а прямые, параллельные AC и BC, пересекают AB в точках P и Q. Докажите, что MN = AM + BN и периметр треугольника OPQ равен длине отрезка AB. Докажите равенство треугольников по стороне, медиане, проведённой к этой стороне, и углам, которые образует медиана с этой стороной. |
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 5298]
Найдите сторону квадрата, вписанного в окружность, если известно, что хорда этой окружности, равная 2, удалена от её центра на расстояние, равное 3.
Биссектриса внешнего угла при вершине C треугольника ABC пересекает описанную окружность в точке D. Докажите, что AD = BD.
Равные отрезки AB и CD пересекаются в точке O, причём AO = OD. Докажите равенство треугольников ABC и DCB.
Докажите равенство треугольников по стороне, медиане, проведённой к этой стороне, и углам, которые образует медиана с этой стороной.
С помощью циркуля и линейки постройте треугольник по стороне и медианам, проведённым к двум другим сторонам.
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 5298]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке