ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Прямая пересекает боковую сторону AC, основание BC и продолжение боковой стороны AB равнобедренного треугольника ABC за точку B в точках K, L и M соответственно. При этом треугольники CKL и BML также равнобедренные. Найдите их углы.

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 603]      



Задача 53016

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Ромбы. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

Даны две окружности одинакового радиуса. Они пересекаются в точках A и B. Через точку A проведена их общая секущая, пересекающая окружности ещё в точках C и D. Через точку B проведена прямая, перпендикулярная этой секущей. Она пересекает окружности еще в точках E и F.
Докажите, что точки C, E, D и F – вершины ромба.

Прислать комментарий     Решение

Задача 53212

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Теорема косинусов ]
[ Отношение площадей подобных треугольников ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4-
Классы: 8,9

Дан треугольник ABC. На стороне BC взята точка P, а на стороне AC взята точка M, причём  ∠APB = ∠BMA = 45°.  Отрезки AP и BM пересекаются в точке O. Известно,что площади треугольников BOP и AOM равны между собой,  BC = 1,  BO = .  Найдите площадь треугольника ABC.

Прислать комментарий     Решение

Задача 53442

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 4-
Классы: 8,9

Прямая пересекает боковую сторону AC, основание BC и продолжение боковой стороны AB равнобедренного треугольника ABC за точку B в точках K, L и M соответственно. При этом треугольники CKL и BML также равнобедренные. Найдите их углы.

Прислать комментарий     Решение

Задача 53643

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
[ Углы между биссектрисами ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 4-
Классы: 8,9

Пусть AE и CD – биссектрисы треугольника ABC. Докажите, что если  ∠BDE : ∠EDC = ∠BED : ∠DEA,  то треугольник ABC — равнобедренный.

Прислать комментарий     Решение

Задача 53664

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4-
Классы: 8,9

На продолжении основания равнобедренного треугольника взята точка. Докажите, что разность расстояний от этой точки до прямых, содержащих боковые стороны треугольника, равна высоте, опущенной на боковую сторону.

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 603]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .