ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найти геометрическое место центров вписанных в треугольник ABC прямоугольников (одна сторона прямоугольника лежит на AB). Выпуклый многоугольник, площадь которого больше 0, 5,
помещен в квадрат со стороной 1. Докажите, что внутри многоугольника
можно поместить отрезок длины 0, 5, параллельный стороне квадрата.
В треугольнике ABC проведена биссектриса AA', I – точка пересечения биссектрис. Докажите, что AI > A'I. ABCD – прямоугольник, M – середина стороны BC. Известно, что прямые MA и MD взаимно перпендикулярны и что периметр прямоугольника ABCD равен 24. Найдите его стороны. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 501]
Попробуйте составить квадрат из набора палочек: 6 шт. по 1 см, 3 шт. по 2 см, 6 шт. по 3 см и 5 шт. по 4 см. Ломать палочки и накладывать одну на другую нельзя.
Биссектриса угла B и биссектриса внешнего угла D прямоугольника
ABCD пересекают сторону AD и прямую AB в точках M и
K соответственно.
В прямоугольнике диагональ образует со стороной угол в 20o. На какие четыре части делится вершинами этого прямоугольника описанная около него окружность?
Пусть O – точка пересечения диагоналей выпуклого четырёхугольника ABCD.
ABCD – прямоугольник, M – середина стороны BC. Известно, что прямые MA и MD взаимно перпендикулярны и что периметр прямоугольника ABCD равен 24. Найдите его стороны.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 501]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке