ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Среднее арифметическое десяти различных натуральных чисел равно 15. Найдите наибольшее значение наибольшего из этих чисел. Малая теорема Ферма. Пусть p – простое число и
p не делит a. Тогда ap–1 ≡ 1 (mod p). а) У Полины есть волшебная шоколадка в форме клетчатой лесенки со стороной 10 (см. рисунок), в каждой дольке своя начинка. Каждую минуту Полина отламывает верхний ряд долек шоколадки, поворачивает его на 90 градусов против часовой стрелки и приставляет её к оставшейся части в виде столбца слева, как показано на рисунке (после этого столбец слипается с другой частью, и снова получается цельная лесенка). Как только каждая долька вернётся на то же место, в котором она была изначально, Полина съест всю шоколадку. Через сколько минут это произойдёт? Как только каждая долька вернётся на то же место, в котором она была изначально, Саша съест шоколадку. Через сколько минут это произойдёт?
б) У Саши есть такая же волшебная шоколадка. Он каждую минуту отламывает верхний ряд долек шоколадки, поворачивает его на 90 градусов по часовой стрелке и приставляет её к оставшейся части в виде столбца слева, как показано на рисунке. Точка D лежит на стороне BC треугольника ABC, а точка O расположена на отрезке AD, причём AO : OD = 9 : 4. Прямая, проходящая через вершину B и точку O, пересекает сторону AC в точке E, причём BO : OE = 5 : 6. Найдите отношение, в котором точка E делит сторону AC. Сумма пяти чисел равна 200. Докажите, что их произведение не может оканчиваться на 1999. Три стороны четырёхугольника в порядке обхода равны 7, 1 и 4. |
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 542]
Дана окружность и точка A внутри неё.
Докажите, что стороны любого неравнобедренного треугольника можно либо все увеличить, либо все уменьшить на одну и ту же величину так, чтобы получился прямоугольный треугольник.
Дан равнобедренный треугольник ABC с основанием AC. H – точка пересечения высот. На сторонах AB и BC выбраны точки M и K и соответственно так, что ∠KMH = 90°. Докажите, что из отрезков AK, CM и MK можно сложить прямоугольный треугольник.
Три стороны четырёхугольника в порядке обхода равны 7, 1 и 4.
В круге проведены два диаметра AB и CD, M — некоторая точка. Известно, что AM = 15, BM = 20, CM = 24. Найдите DM.
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 542]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке