ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В остроугольном треугольнике ABC на высоте AD взята точка M, а на высоте BP – точка N так, что углы BMC и ANC – прямые. Расстояние между точками M и N равно  4 + 2,  угол MCN равен 30°. Найдите биссектрису CL треугольника CMN.

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 152]      



Задача 102703

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Признаки подобия ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC с углом A, равным 40° и стороной   AB =   на высоте AH взята такая точка D, что  ∠BDC = 140°  и  CD = 1.
Найдите угол между прямыми AB и CD, а также угол B.

Прислать комментарий     Решение

Задача 115505

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Признаки подобия ]
[ Вспомогательные подобные треугольники ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9,10

Дана трапеция ABCD с основаниями  AD = a  и  BC = b.  Точки M и N лежат на сторонах AB и CD соответственно, причём отрезок MN параллелен основаниям трапеции. Диагональ AC пересекает этот отрезок в точке O. Найдите MN, если известно, что площади треугольников AMO и CNO равны.

Прислать комментарий     Решение

Задача 53599

Темы:   [ Касающиеся окружности ]
[ Признаки подобия ]
[ Две касательные, проведенные из одной точки ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Две окружности касаются друг друга внутренним образом в точке A. Хорда BC большей окружности касается меньшей в точке D. Прямая AD вторично пересекает большую окружность в точке M. Найдите MB, если  MA = a,  MD = b.

Прислать комментарий     Решение

Задача 53732

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Признаки подобия ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

В остроугольном треугольнике ABC на высоте AD взята точка M, а на высоте BP – точка N так, что углы BMC и ANC – прямые. Расстояние между точками M и N равно  4 + 2,  угол MCN равен 30°. Найдите биссектрису CL треугольника CMN.

Прислать комментарий     Решение

Задача 53747

Темы:   [ Отношения линейных элементов подобных треугольников ]
[ Признаки подобия ]
Сложность: 4-
Классы: 8,9

Диагональ AC трапеции ABCD делит её на два подобных треугольника. Докажите, что  AC² = ab,  где a и b – основания трапеции.

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 152]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .