ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что диаметр, проходящий через середину хорды, не являющейся диаметром, перпендикулярен этой хорде.

   Решение

Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 603]      



Задача 53436

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Точки M и N лежат на стороне AC треугольника ABC, причём  ∠ABM = ∠C  и  ∠CBN = ∠A.  Докажите, что треугольник BMN равнобедренный.

Прислать комментарий     Решение

Задача 53438

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Прямая, проходящая через вершину A треугольника ABC, пересекает сторону BC в точке M. При этом  BM = AB,  ∠BAM = 35°,  ∠CAM = 15°.
Найдите углы треугольника ABC.

Прислать комментарий     Решение

Задача 53440

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Прямая, проходящая через вершину A треугольника ABC, пересекает сторону BC в точке M, причём  BM = AB.
Найдите разность углов BAM и CAM, если  ∠C = 25°.

Прислать комментарий     Решение

Задача 53911

Темы:   [ Диаметр, основные свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Хорды и секущие (прочее) ]
Сложность: 2+
Классы: 8,9

Докажите, что диаметр окружности, перпендикулярный хорде, делит эту хорду пополам.

Прислать комментарий     Решение

Задача 53912

Темы:   [ Диаметр, основные свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Хорды и секущие (прочее) ]
Сложность: 2+
Классы: 8,9

Докажите, что диаметр, проходящий через середину хорды, не являющейся диаметром, перпендикулярен этой хорде.

Прислать комментарий     Решение

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 603]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .