Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 604]
ABCD – выпуклый четырёхугольник, в котором AD = BD = AC. Точки M и N – середины сторон AB и CD соответственно. Отрезок MN пересекает диагонали четырёхугольника в точках X и Y, P – точка пересечения AN и DM. Докажите, что PX = PY.
|
|
Сложность: 4+ Классы: 9,10
|
Точка D лежит на основании BC равнобедренного треугольника ABC, а точки M и K – на его боковых сторонах AB и AC соответственно, причём AMDK – параллелограмм. Прямые MK и BC пересекаются в точке L. Перпендикуляр к BC, восставленный из точки D, пересекает прямые AB и AC в точках X и Y соответственно. Докажите, что окружность с центром L, проходящая через D, касается описанной окружности треугольника AXY.
|
|
Сложность: 5- Классы: 8,9,10
|
В четырёхугольнике ABCD стороны AB, BC и CD равны,
M – середина стороны AD. Известно, что ∠BMC = 90°.
Найдите угол между диагоналями четырёхугольника ABCD.
|
|
Сложность: 5 Классы: 9,10,11
|
В четырёхугольнике ABCD AB = BC, ∠A = ∠B = 20°, ∠C = 30°. Продолжение стороны AD пересекает BC в точке M, а продолжение стороны CD пересекает AB в точке N. Найдите угол AMN.
Рассмотрим равнобедренные треугольники с одними и теми же боковыми сторонами.
Докажите, что чем больше угол при вершине, тем меньше высота, опущенная на основание.
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 604]