Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Можно ли замостить плоскость параболами, среди которых нет равных? (Требуется, чтобы каждая точка плоскости принадлежала ровно одной параболе и чтобы ни одна парабола не переводилась ни в какую другую параболу движением.)

Вниз   Решение


Постройте прямоугольный треугольник по катету и медиане, проведённой из вершины прямого угла.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник по трём высотам.

ВверхВниз   Решение



Боковые грани треугольной пирамиды образуют равные углы с плоскостью основания. Докажите, что высота пирамиды проходит либо через центр окружности, вписанной в треугольник основания, либо через центр одной из вневписанных окружностей этого треугольника.

ВверхВниз   Решение



Каждая из боковых граней треугольной пирамиды образует с плоскостью основания угол в 60o. Стороны основания равны 10, 10, 12. Найдите объем пирамиды.

ВверхВниз   Решение


Два выпуклых многоугольника A1A2...An и B1B2...Bn  (n ≥ 4)  таковы, что каждая сторона первого больше соответствующей стороны второго.
Может ли оказаться, что каждая диагональ второго больше соответствующей диагонали первого?

ВверхВниз   Решение


Продолжения равных хорд AB и CD окружности соответственно за точки B и C пересекаются в точке P.
Докажите, что треугольники APD и BPC равнобедренные.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 352]      



Задача 53935

Темы:   [ Вспомогательные равные треугольники ]
[ Диаметр, основные свойства ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 2+
Классы: 8,9

Продолжения равных хорд AB и CD окружности соответственно за точки B и C пересекаются в точке P.
Докажите, что треугольники APD и BPC равнобедренные.

Прислать комментарий     Решение

Задача 103765

Темы:   [ Вспомогательные равные треугольники ]
[ Наибольшая или наименьшая длина ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2+
Классы: 7

Автор: Ботин Д.А.

Квадрат ABCD со стороной 2 и квадрат DEFK со стороной 1 стоят рядом на верхней стороне AK квадрата AKLM со стороной 3. Между парами точек A и E, B и F, C и K, D и L натянуты паутинки. Паук поднимается снизу вверх по маршруту AEFB и спускается по маршруту CKDL. Какой маршрут короче?

Прислать комментарий     Решение

Задача 116057

Темы:   [ Равные треугольники. Признаки равенства (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 2+
Классы: 7,8

Прямоугольный лист бумаги согнули, совместив вершину с серединой противоположной короткой стороны (см. рис.). Оказалось, что треугольники I и II равны. Найдите длинную сторону прямоугольника, если короткая равна 8.

Прислать комментарий     Решение

Задача 53312

Темы:   [ Равные треугольники. Признаки равенства ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

На сторонах AC и BC треугольника ABC взяты точки C1 и C2. Докажите, что треугольник ABC равнобедренный, если треугольники ABC1 и BAC2 равны.

Прислать комментарий     Решение

Задача 53314

Темы:   [ Равные треугольники. Признаки равенства ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

Докажите, что у равнобедренного треугольника:
  а) биссектрисы, проведённые из вершин при основании, равны;
  б) медианы, проведённые из тех же вершин, также равны.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 352]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .