|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В каком отношении делит площадь прямоугольной трапеции, описанной около окружности, биссектриса её острого угла? Боковые рёбра треугольной пирамиды попарно перпендикулярны, а площади боковых граней равны S , P и Q . Найдите радиус вписанного шара. Найдите также радиус шара, касающегося основания и продолжений боковых граней пирамиды. В поселке 100 домов. Какое наибольшее число замкнутых не пересекающихся заборов можно построить, чтобы каждый забор огораживал хотя бы один дом и никакие два забора не огораживали бы одну и ту же совокупность домов? Докажите, что касательные к окружности, проведённые через концы диаметра, параллельны. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1028]
Из общей точки проведены к окружности две касательные. Радиус окружности равен 11, а сумма касательных равна 120.
Докажите, что касательные к окружности, проведённые через концы диаметра, параллельны.
Из точки M проведены касательные MA и MB к окружности с центром O (A и B – точки касания). Найдите радиус окружности, если ∠AMB = α и AB = a.
Из точки M, расположенной вне окружности на расстоянии
Вписанная окружность треугольника ABC касается сторон AB, BC и AC в точках C1, A1 и B1 соответственно. Известно, что AC1 = BA1 = CB1. Докажите, что треугольник ABC правильный.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1028] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|