Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Основание KM равнобедренного треугольника KLM является хордой окружности, центр которой лежит вне треугольника KLM. Прямые, проходящие через точку L, касаются окружности в точках P и Q. Найдите площадь треугольника PLQ, если  KL = LM = ,  ∠KLM = 2 arcsin ,  а радиус окружности
равен 1.

Вниз   Решение


На боковой стороне равнобедренного треугольника как на диаметре построена окружность, делящая вторую боковую сторону на отрезки, равные a и b.
Найдите основание треугольника.

ВверхВниз   Решение


Как надо расположить числа  1, 2, ..., 2n  в последовательности  a1, a2, ..., a2n,  чтобы сумма  |a1a2| + |a2a3| + ... + |a2n–1a2n| + |a2na1|  была наибольшей?

ВверхВниз   Решение


Докажите равенство:

4arctg $\displaystyle {\textstyle\frac{1}{5}}$ - arctg $\displaystyle {\textstyle\frac{1}{239}}$ = $\displaystyle {\frac{\pi}{4}}$.


ВверхВниз   Решение


Докажите равенство:

arctg x + arctg y = arctg $\displaystyle {\frac{x+y}{1-xy}}$ + $\displaystyle \varepsilon$$\displaystyle \pi$,

где $ \varepsilon$ = 0, если xy < 1, $ \varepsilon$ = - 1 , если xy > 1 и x < 0, $ \varepsilon$ = + 1, если xy > 1 и x > 0.

ВверхВниз   Решение


Биссектриса внешнего угла при вершине C треугольника ABC пересекает описанную окружность в точке D. Докажите, что AD = BD.

ВверхВниз   Решение


Автор: Mudgal A.

Петя и Вася играют в такую игру. Сначала Петя задумывает некоторый многочлен P(x) с целыми коэффициентами. Далее делается несколько ходов. За ход Вася платит Пете рубль и называет любое целое число a по своему выбору, которое он ещё не называл, а Петя в ответ говорит, сколько решений в целых числах имеет уравнение  P(x) = a.  Вася выигрывает, как только Петя два раза (не обязательно подряд) назвал одно и то же число. Какого наименьшего числа рублей хватит Васе, чтобы гарантированно выиграть?

ВверхВниз   Решение


Постройте треугольник, если известны отрезки, на которые вписанная окружность делит его сторону, и радиус вписанной окружности.

Вверх   Решение

Задачи

Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 772]      



Задача 52608

Темы:   [ Признаки и свойства касательной ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3-
Классы: 8,9

Окружность с центром в точке O делит отрезок AO пополам. Найдите угол между касательными, проведёнными из точки A.

Прислать комментарий     Решение


Задача 52623

Темы:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3-
Классы: 8,9

В равнобедренном треугольнике боковая сторона делится точкой касания вписанного круга в отношении 7:5 (начиная от вершины). Найдите отношение боковой стороны к основанию.

Прислать комментарий     Решение


Задача 52626

Темы:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3-
Классы: 8,9

Около окружности, радиус которой равен 4, описан прямоугольный треугольник, гипотенуза которого равна 26. Найдите периметр треугольника.

Прислать комментарий     Решение


Задача 52645

Темы:   [ Описанные четырехугольники ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3-
Классы: 8,9

Докажите, что у четырёхугольника, описанного около окружности, суммы противоположных сторон равны.

Прислать комментарий     Решение


Задача 53975

Темы:   [ Построение треугольников по различным элементам ]
[ Признаки и свойства касательной ]
Сложность: 3-
Классы: 8,9

Постройте треугольник, если известны отрезки, на которые вписанная окружность делит его сторону, и радиус вписанной окружности.

Прислать комментарий     Решение


Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 772]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .