ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите в последовательности 2, 6, 12, 20, 30, ... число, стоящее а) на 6-м; б) на 1994-м месте. Ответ объясните.
![]() ![]() На основании AB равнобедренного треугольника ABC взята точка D, причём BD - AD = 4. Найдите расстояние между точками, в которых окружности, вписанные в треугольники ACD и BCD, касаются отрезка CD.
![]() ![]() |
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 213]
С помощью циркуля и линейки постройте треугольник по радиусу описанной окружности и высоте и медиане, проведённым из одной вершины.
Постройте треугольник по стороне, радиусу вписанной окружности и радиусу вневписанной окружности, касающейся этой стороны. (Исследование проводить не требуется.)
На основании AB равнобедренного треугольника ABC взята точка D, причём BD - AD = 4. Найдите расстояние между точками, в которых окружности, вписанные в треугольники ACD и BCD, касаются отрезка CD.
Радиус окружности, описанной около остроугольного треугольника ABC, равен 1. Известно, что на этой окружности лежит центр другой окружности, проходящей через вершины A, C и точку пересечения высот треугольника ABC. Найдите AC.
С помощью циркуля и линейки постройте треугольник по центрам описанной, вписанной и одной из вневписанных окружностей.
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 213] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |