Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Докажите, что  ½ (x² + y²) ≥ xy  при любых x и y.

Вниз   Решение


Монету бросают трижды. Сколько разных последовательностей орлов и решек можно при этом получить?

ВверхВниз   Решение


В футбольной команде (11 человек) нужно выбрать капитана и его заместителя. Сколькими способами это можно сделать?

ВверхВниз   Решение


Окружность делит каждую из сторон треугольника на три равные части. Докажите, что этот треугольник правильный.

ВверхВниз   Решение


Из точки, данной на окружности, проведены диаметр и хорда, равная радиусу. Найдите угол между ними.

ВверхВниз   Решение


Диагонали четырёхугольника делят его углы пополам. Докажите, что в такой четырёхугольник можно вписать окружность.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 66]      



Задача 54039

Темы:   [ Биссектриса угла (ГМТ) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

На боковых сторонах AB и AC равнобедренного треугольника ABC построены вне его равные треугольники AMB и ANC  (AM = AN).
Докажите, что точки M и N симметричны относительно биссектрисы угла BAC.

Прислать комментарий     Решение

Задача 54058

Темы:   [ Биссектриса угла (ГМТ) ]
[ Ромбы. Признаки и свойства ]
Сложность: 3-
Классы: 8,9

Диагонали четырёхугольника делят его углы пополам. Докажите, что в такой четырёхугольник можно вписать окружность.

Прислать комментарий     Решение

Задача 54546

Тема:   [ Биссектриса угла (ГМТ) ]
Сложность: 3-
Классы: 8,9

Найдите геометрическое место точек, равноудалённых от двух пересекающихся прямых.

Прислать комментарий     Решение

Задача 56529

Темы:   [ Биссектриса угла (ГМТ) ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9

В треугольнике ABC проведены биссектриса AD и средняя линия A1C1. Прямые AD и A1C1 пересекаются в точке K. Докажите, что  2A1K = |b – c|.

Прислать комментарий     Решение

Задача 53391

Темы:   [ Биссектриса угла (ГМТ) ]
[ Свойства биссектрис, конкуррентность ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 3+
Классы: 8,9

Один из углов треугольника равен 120°. Докажите, что треугольник, образованный основаниями биссектрис данного, прямоугольный.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 66]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .