Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Все плоские углы трёхгранного угла равны 90o . Найдите углы между биссектрисами плоских углов.

Вниз   Решение


Чему равна сумма arctg x + arcctg x

ВверхВниз   Решение


Делится ли на 1999 сумма чисел 1 + 2 + 3 +...+ 1999?

ВверхВниз   Решение


В выпуклом четырехугольнике ABCD взят четырехугольник KLMN, образованный центрами тяжести треугольников ABC, BCD, DBA и CDA. Доказать, что прямые, соединяющие середины противоположных сторон четырехугольника ABCD, пересекаются в той же точке, что и прямые, соединяющие середины противоположных сторон четырехугольника KLMN.

ВверхВниз   Решение


Докажите формулы:

arcsin(- x) = - arcsin x,    arccos(- x) = $\displaystyle \pi$ - arccos x.


ВверхВниз   Решение


Докажите равенство   (a2 + b2)(u2 + v2) = (au + bv)2 + (av – bu)2.

ВверхВниз   Решение


Дан многочлен  P(x) = a2nx2n + a2n–1x2n–1 + ... + a1x + a0,  у которого каждый коэффициент ai принадлежит отрезку  [100, 101].
При каком минимальном натуральном n у такого многочлена может найтись действительный корень?

ВверхВниз   Решение


Стороны AB, BC, CD, DA пространственного четырёхугольника ABCD касаются некоторой сферы в точках K, L, M, N соответственно.
Докажите, что точки K, L, M, N лежат в одной плоскости.

ВверхВниз   Решение


Вычислите следующие произведения:
а) sin 20osin 40osin 60osin 80o;
б) cos 20ocos 40ocos 60ocos 80o.

ВверхВниз   Решение


Докажите, что сумма $\frac {1}{\sqrt {1} + \sqrt {2}} + \frac {1}{\sqrt {2} + \sqrt {3}} + \dots + \frac {1}{\sqrt {99} + \sqrt {100}}$ является целым числом.

ВверхВниз   Решение


Дана замкнутая пространственная ломаная с вершинами A1, A2, ..., An, причём каждое звено пересекает фиксированную сферу в двух точках, а все вершины ломаной лежат вне сферы. Эти точки делят ломаную на 3n отрезков. Известно, что отрезки, прилегающие к вершине A1, равны между собой. То же самое верно и для вершин A2, A3, ..., An - 1. Доказать, что отрезки, прилегающие к вершине An, также равны между собой.

ВверхВниз   Решение


Прямая l пересекает две окружности в четырех точках. Докажите, что четырехугольник, образованный касательными в этих точках, описанный, причем центр его описанной окружности лежит на прямой, соединяющей центры данных окружностей.

ВверхВниз   Решение


В треугольнике ABC точка P — центр вписанной окружности, а точка Q — центр окружности, описанной около треугольника ABC. Прямая PQ перпендикулярна биссектрисе AP треугольника ABC. Известно, что величина угла PAQ равна $ \alpha$. Найдите углы треугольника.

ВверхВниз   Решение


Докажите, что три средние линии разбивают треугольник на четыре равных треугольника.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 330]      



Задача 53552

Темы:   [ Средняя линия треугольника ]
[ Периметр треугольника ]
Сложность: 2+
Классы: 8,9

Периметр треугольника равен 28, середины сторон соединены отрезками. Найдите периметр полученного треугольника.

Прислать комментарий     Решение

Задача 54120

Темы:   [ Средняя линия треугольника ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 2+
Классы: 8,9

Докажите, что три средние линии разбивают треугольник на четыре равных треугольника.

Прислать комментарий     Решение

Задача 54121

Темы:   [ Средняя линия треугольника ]
[ Периметр треугольника ]
Сложность: 2+
Классы: 8,9

Дан треугольник с периметром, равным 24. Найдите периметр треугольника с вершинами в серединах сторон данного.

Прислать комментарий     Решение

Задача 54668

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Средняя линия, параллельная стороне AC треугольника ABC, равна половине стороны AB. Докажите, что треугольник ABC – равнобедренный.

Прислать комментарий     Решение

Задача 56457

Темы:   [ Средняя линия треугольника ]
[ Параллелограмм Вариньона ]
Сложность: 2+
Классы: 8,9

Докажите, что середины сторон произвольного четырёхугольника – вершины параллелограмма.
Для каких четырёхугольников этот параллелограмм является прямоугольником, для каких – ромбом, для каких – квадратом?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .