ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Из круга S радиуса 1 вырезали круг S' радиуса 1/2, граница которого проходит через центр исходного круга. Определите, где находится центр тяжести полученной фигуры F. Все рёбра треугольной пирамиды равны a. Найти наибольшую площадь, которую может иметь ортогональная проекция этой пирамиды на плоскость. Пусть
A1, B1,..., F1 — середины сторон
AB, BC,..., FA произвольного шестиугольника. Докажите, что точки
пересечения медиан треугольников A1C1E1 и B1D1F1 совпадают.
На сторонах BC и CD параллелограмма ABCD взяты точки K и L
так, что
BK : KC = CL : LD. Докажите, что центр масс
треугольника AKL лежит на диагонали BD.
Решить уравнение x8 + 4x4 + x² + 1 = 0. Дан треугольник с периметром, равным 24. Найдите периметр треугольника с вершинами в серединах сторон данного. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 330]
Периметр треугольника равен 28, середины сторон соединены отрезками. Найдите периметр полученного треугольника.
Докажите, что три средние линии разбивают треугольник на четыре равных треугольника.
Дан треугольник с периметром, равным 24. Найдите периметр треугольника с вершинами в серединах сторон данного.
Средняя линия, параллельная стороне AC треугольника ABC, равна половине стороны AB. Докажите, что треугольник ABC – равнобедренный.
Докажите, что середины сторон произвольного четырёхугольника – вершины параллелограмма.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 330]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке