|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На рёбрах произвольного тетраэдра выбрано по точке. Через каждую тройку точек, лежащих на рёбрах с общей вершиной, проведена плоскость. Докажите, что если три из четырёх проведённых плоскостей касаются вписанного в тетраэдр шара, то и четвёртая плоскость также его касается. Точки M и N расположены соответственно на сторонах AB и AC треугольника ABC, причем BM = 3AM и CN = 3AN. Докажите, что MN || BC и найдите MN, если BC = 12.
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 330]
Стороны треугольника равны a и b. Через середину третьей стороны проведены прямые, параллельные двум другим сторонам. Найдите периметр полученного четырёхугольника.
Три средних линии треугольника разбивают его на четыре части. Площадь одной из них равна S. Найдите площадь данного треугольника.
Середины E и F параллельных сторон BC и AD параллелограмма ABCD соединены с вершинами D и B соответственно.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 330] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|