ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дана треугольная пирамида $SABC$, основание которой – равносторонний треугольник $ABC$, а все плоские углы при вершине $S$ равны $\alpha$. При каком наименьшем $\alpha$ можно утверждать, что эта пирамида правильная?
Сторона треугольника равна 2
Прямая l перпендикулярна одной из медиан треугольника. Серединные перпендикуляры к сторонам этого треугольника пересекают прямую l в трёх точках. Докажите, что одна из них является серединой отрезка, образованного двумя оставшимися. В треугольнике ABC угол A равен
120o.
Докажите, что из отрезков длиной a, b, b + c можно составить треугольник.
Два отрезка AB и CD пересекаются в точке O, которая является серединой каждого из них. Докажите равенство треугольников ACD и BDC. Пусть P – основание перпендикуляра, опущенного из вершины C меньшего основания BC равнобедренной трапеции ABCD на её большее основание AD. Найдите DP и AP, если основания трапеции равны a и b (a > b). |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 688]
Докажите, что всякая трапеция, вписанная в окружность, — равнобедренная.
В равнобедренной трапеции ABCD основания AD = 12, BC = 6, высота равна 4. Диагональ AC делит угол BAD трапеции на две части. Какая из них больше?
Через точку D, взятую на стороне AB треугольника ABC,
проведена прямая, параллельная AC и пересекающая сторону BC в
точке E.
Пусть P – основание перпендикуляра, опущенного из вершины C меньшего основания BC равнобедренной трапеции ABCD на её большее основание AD. Найдите DP и AP, если основания трапеции равны a и b (a > b).
Найдите углы и стороны четырёхугольника с вершинами в серединах сторон равнобедренной трапеции, диагонали которой равны 10 и пересекаются под углом 40o.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 688]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке