Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Докажите, что отрезок общей внешней касательной к двум окружностям, заключённый между общими внутренними касательными, равен отрезку общей внутренней касательной.

Вниз   Решение


Дано число 100...01, число нулей в нем равно 299. Докажите, что это число составное.

ВверхВниз   Решение


Средняя линия, параллельная стороне $AC$ треугольника $ABC$, пересекает его описанную окружность в точках $X$ и $Y$. Пусть $I$ – центр вписанной окружности треугольника $ABC$, а $D$ – середина дуги $AC$, не содержащей точку $B$. На отрезке $DI$ отметили точку $L$ такую, что $DL=BI/2$. Докажите, что из точек $X$ и $Y$ отрезок $IL$ виден под равными углами.

ВверхВниз   Решение


На сторонах АВ, ВС и СА равностороннего треугольника АВС выбраны точки D, E и F соответственно так, что  DE || АC,  DF || BС.
Найдите угол между прямыми и BF.

ВверхВниз   Решение


Докажите, что если     при  n = 2, ..., 10,  то  

ВверхВниз   Решение


Меньшая боковая сторона прямоугольной трапеции равна 3, а большая образует угол 30°, с одним из оснований.
Найдите это основание, если на нём лежит точка пересечения биссектрис углов при другом основании.

Вверх   Решение

Задачи

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 604]      



Задача 54094

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Вершины M и N равнобедренного треугольника BMN  (BM = BN)  лежат соответственно на сторонах AD и CD квадрата ABCD. Докажите, что  MN || AC.

Прислать комментарий     Решение

Задача 54145

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3+
Классы: 8,9

Высоты остроугольного треугольника ABC, проведённые из вершин B и C, равны 7 и 9, а медиана AM равна 8. Точки P и Q симметричны точке M относительно сторон AC и AB соответственно. Найдите периметр четырёхугольника APMQ.

Прислать комментарий     Решение

Задача 54169

Темы:   [ Трапеции (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

Меньшая боковая сторона прямоугольной трапеции равна 3, а большая образует угол 30°, с одним из оснований.
Найдите это основание, если на нём лежит точка пересечения биссектрис углов при другом основании.

Прислать комментарий     Решение

Задача 54172

Темы:   [ Средняя линия трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Один из углов прямоугольной трапеции равен 120°, большее основание равно 12.
Найдите отрезок, соединяющий середины диагоналей, если известно, что меньшая диагональ трапеции равна её большему основанию.

Прислать комментарий     Решение

Задача 54257

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Трапеции (прочее) ]
[ Биссектриса угла ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Биссектрисы тупых углов при основании трапеции пересекаются на другом её основании.
Найдите стороны трапеции, если её высота равна 12, а длины биссектрис равны 15 и 13.

Прислать комментарий     Решение

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 604]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .