ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны выпуклый многоугольник $M$ и простое число $p$. Оказалось, что существует ровно $p$ способов разбить $M$ на равносторонние треугольники со стороной 1 и квадраты со стороной 1.
В равнобедренном треугольнике ABC (AB = BC) биссектрисы BD
и AF пересекаются в точке O. Отношение площади треугольника DOA
к площади треугольника BOF равно
В правильной треугольной пирамиде SABC ( S – вершина, SA = 2 )
точка D – середина ребра SB . Расстояние от точки C до прямой AD
равно
В окружности проведены хорды AB и BC, причём
AB =
|
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 501]
Дано n окружностей: O1, O2,...On, проходящих через одну точку O. Вторые точки пересечения O1 с O2, O2 с O3,..., O3 с O1 обозначим соответственно через A1, A2,..., An. На O1 берем произвольную точку B1. Если B1 не совпадает с A1, то проводим через B1 и A1 прямую до второго пересечения с O2 в точке B2. Если B2 не совпадает с A2, то проводим через B2 и A2 прямую до второго пересечения с O3 в точке B3. Продолжая таким образом, мы получим точку Bn на окружности On. Если On не совпадает с An, то проводим через Bn и An прямую до второго пересечения с O1 в точке Bn + 1. Докажите, что Bn + 1 совпадает с B1.
Длины трёх сторон четырёхугольника, вписанного в окружность радиуса 2
Длины трёх сторон четырёхугольника, вписанного в окружность радиуса 2,
Одинаковы и равны
В окружности проведены хорды AB и BC, причём
AB =
Биссектрисы внутренних углов треугольника продолжены до точек пересечения с описанной около треугольника окружностью, отличных от вершин исходного треугольника. В результате попарного соединения этих точек получился новый треугольник. Известно, что углы исходного треугольника равны 30o, 60o и 90o, а его площадь равна 2. Найдите площадь нового треугольника.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 501]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке