|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В вершинах куба расставлены цифры 1, 2, ..., 8. Докажите, что есть ребро, цифры на концах которого отличаются не менее чем на 3. В трапеции ABCD углы A и D прямые, AB = 1, CD = 4, AD = 5. На стороне AD взята точка M так, что ∠CMD = 2∠BMA. Дан треугольник со сторонами 2, 3, 4. Найдите радиус наименьшего круга, из которого можно вырезать этот треугольник. Докажите, что если фигура имеет две перпендикулярные оси симметрии, то она имеет центр симметрии. Сторона AD прямоугольника ABCD равна 2. На продолжении стороны AD за точку A взята точка E, причём EA = 1, ∠BEC = 30°. Найдите BE. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 64]
На продолжении стороны AD прямоугольника ABCD за точку D
взята точка E, причём DE = 0,5 AD, ∠BEC = 30°.
Сторона AD прямоугольника ABCD равна 2. На продолжении стороны AD за точку A взята точка E, причём EA = 1, ∠BEC = 30°. Найдите BE.
В трапеции ABCD углы A и D прямые, AB = 1, CD = 4, AD = 5. На стороне AD взята точка M так, что ∠CMD = 2∠BMA.
Дан выпуклый семиугольник. Выбираются четыре произвольных его угла и вычисляются их синусы, от остальных трёх углов вычисляются косинусы. Оказалось, что сумма таких семи чисел не зависит от изначального выбора четырёх углов. Докажите, что у этого семиугольника найдутся четыре равных угла.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 64] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|