ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Окружность, центр которой лежит внутри квадрата PQRS, проходит через точки Q и R.
Найдите угол между касательными к окружности, проведёнными из точки S, если отношение стороны квадрата к радиусу окружности равно  24 : 13.

   Решение

Задачи

Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 769]      



Задача 54380

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки и свойства касательной ]
[ Теорема Пифагора (прямая и обратная) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

Окружность, центр которой лежит вне квадрата ABCD, проходит через точки B и C.
Найдите угол между касательными к окружности, проведёнными из точки D, если отношение стороны квадрата к диаметру окружности равно  3 : 5.

Прислать комментарий     Решение

Задача 54381

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки и свойства касательной ]
[ Теорема Пифагора (прямая и обратная) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

Окружность, центр которой лежит внутри квадрата PQRS, проходит через точки Q и R.
Найдите угол между касательными к окружности, проведёнными из точки S, если отношение стороны квадрата к радиусу окружности равно  24 : 13.

Прислать комментарий     Решение

Задача 54507

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Признаки и свойства касательной ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

Найдите геометрическое место точек, из которых проведены касательные к данной окружности, равные заданному отрезку.

Прислать комментарий     Решение


Задача 54548

Темы:   [ ГМТ - прямая или отрезок ]
[ Общая касательная к двум окружностям ]
[ Вспомогательные подобные треугольники ]
[ Гомотетия помогает решить задачу ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

Два колеса радиусов r и R катаются по прямой m. Найдите геометрическое место точек пересечения M их общих внутренних касательных.

Прислать комментарий     Решение

Задача 54666

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Признаки и свойства касательной ]
Сложность: 3+
Классы: 8,9

Прямая, проходящая через точку O1, касается окружности с центром O2 в точке M, а прямая, прходящая через точку O2, касается окружности с центром O1 в точке N. Прямые O1M и O2N пересекаются в точке P, а прямые O1N и O2N – в точке Q. Докажите, что  PQO1O2.

Прислать комментарий     Решение

Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .