Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

а) Пусть $ \varepsilon$ = $ {\frac{1}{2}}$ + $ {\frac{i\sqrt{3}}{2}}$. Докажите, что точки a, b, c являются вершинами правильного треугольника тогда и только тогда, когда a + $ \varepsilon^{2}_{}$b + $ \varepsilon^{4}_{}$c = 0 или a + $ \varepsilon^{4}_{}$b + $ \varepsilon^{2}_{}$c = 0.
б) Докажите, что точки a, b, c являются вершинами правильного треугольника тогда и только тогда, когда a2 + b2 + c2 = ab + bc + ac.

Вниз   Решение


Во вписанном четырёхугольнике ABCD прямая Симсона точки A относительно треугольника BCD перпендикулярна прямой Эйлера треугольника BCD. Докажите, что прямая Симсона точки B относительно треугольника ACD перпендикулярна прямой Эйлера треугольника ACD.

ВверхВниз   Решение


Основанием параллелепипеда служит квадрат. Одна из вершин верхнего основания равноудалена от всех вершин нижнего основания и находится на расстоянии b от этого основания. Сторона основания равна a . Найдите полную поверхность параллелепипеда.

ВверхВниз   Решение


В окружность вписаны две равнобедренные трапеции с соответственно параллельными сторонами. Докажите, что диагональ одной из них равна диагонали другой трапеции.

ВверхВниз   Решение


Целые ненулевые числа a1, a2, ..., an таковы, что равенство

выполнено при всех целых значениях x, входящих в область определения дроби, стоящей в левой части.
  a) Докажите, что число n чётно.
  б) При каком наименьшем n такие числа существуют?

ВверхВниз   Решение


Постройте треугольник по высоте, опущенной на одну из сторон, и медианам, проведённым к двум другим сторонам.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 92]      



Задача 53460

Темы:   [ Построение треугольников по различным элементам ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3+
Классы: 8,9

Постройте прямоугольный треугольник по катету и медиане, проведённой из вершины прямого угла.

Прислать комментарий     Решение

Задача 53639

Темы:   [ Построение треугольников по различным элементам ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Постройте прямоугольный треугольник по гипотенузе и точке, в которой её касается вписанная окружность.

Прислать комментарий     Решение

Задача 53947

Темы:   [ Построение треугольников по различным элементам ]
[ Вписанные и описанные окружности ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 3+
Классы: 8,9

Постройте окружность, на которой стороны данного треугольника высекают три одинаковые хорды, равные заданному отрезку.

Прислать комментарий     Решение

Задача 54527

Темы:   [ Построение треугольников по различным элементам ]
[ Метод ГМТ ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки постройте треугольник по углу, биссектрисе, проведённой из вершины этого угла, и радиусу вписанной окружности.

Прислать комментарий     Решение


Задача 54589

Темы:   [ Построение треугольников по различным элементам ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3+
Классы: 8,9

Постройте треугольник по высоте, опущенной на одну из сторон, и медианам, проведённым к двум другим сторонам.

Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 92]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .