ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В тетраэдр ABCD вписана сфера с центром O, касающаяся его граней BCD, ACD, ABD и ABC в точках A1, B1, C1 и D1 соответственно.
  а) Пусть Pa – такая точка, что точки, симметричные ей относительно прямых OB, OC и OD, лежат в плоскости BCD. Точки Pb, Pc и Pd определяются аналогично. Докажите, что прямые A1Pa, B1Pb, C1Pc и D1Pd пересекаются в некоторой точке P.
  б) Пусть I – центр сферы, вписанной в тетраэдр A1B1C1D1A2 – точка пересечения прямой A1I с плоскостью B1C1D1B2, C2, D2 определены аналогично. Докажите, что P лежит внутри тетраэдра A2B2C2D2.

Вниз   Решение


Расстояние между центрами окружностей больше суммы их радиусов.
Докажите, что середины отрезков четырёх общих касательных этих окружностей лежат на одной прямой.

ВверхВниз   Решение


Докажите, что при нечетном m выражение  (x + y + z)mxm – ym – zm  делится на  (x + y + z)3x3y3z3.

ВверхВниз   Решение


На прямой даны точки A, B и C. Известно, что  AB = 5,  а отрезок AC длиннее BC в полтора раза. Найдите отрезки AC и BC.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 70]      



Задача 54739

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Экстремальные свойства (прочее) ]
Сложность: 3
Классы: 8,9

В деревне у прямой дороги с интервалами в 50 метров стоят три избы A, B и C.
В какой точке дороги надо выкопать колодец, чтобы сумма расстояний от колодца до изб была бы наименьшей?

Прислать комментарий     Решение

Задача 54741

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Экстремальные свойства (прочее) ]
Сложность: 3
Классы: 8,9

В деревне A живет 100 школьников, в деревне B живет 50 школьников. Расстояние между деревнями 3 километра.
В какой точке дороги из A в B надо построить школу, чтобы суммарное расстояние, проходимое всеми школьниками, было бы как можно меньше?

Прислать комментарий     Решение

Задача 54744

Тема:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3
Классы: 8,9

На прямой даны точки A, B и C. Известно, что  AB = 5,  а отрезок AC длиннее BC в полтора раза. Найдите отрезки AC и BC.

Прислать комментарий     Решение

Задача 54752

Тема:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3
Классы: 8,9

Точка C – середина отрезка AB. На отрезках AC и BC взяты точки M и N, причём  AM : MC = CN : NB.
Докажите, что отрезок MN равен половине отрезка AB.

Прислать комментарий     Решение

Задача 54757

Тема:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3
Классы: 8,9

Точки A, B и C расположены на одной прямой и  AC : BC = 2 : 5.  Найдите отношения  AC : AB  и  BC : AB.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 70]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .