Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

К описанной окружности треугольника $ABC$ проведены касательные в точках $B$ и $C$. Лучи $CC_1$, $BB_1$, где $B_1$ и $C_1$ – середины сторон $AC$ и $AB$, пересекают эти касательные в точках $K$ и $L$ соответственно. Докажите, что $\angle BAK=\angle CAL$.

Вниз   Решение


Дано натуральное число $n > 1$. Назовём положительную обыкновенную дробь (не обязательно несократимую) хорошей, если сумма её числителя и знаменателя равна $n$. Докажите, что любую положительную обыкновенную дробь, знаменатель которой меньше $n$, можно выразить через хорошие дроби (не обязательно различные) с помощью операций сложения и вычитания тогда и только тогда, когда $n$ — простое число.

Напомним, что обыкновенная дробь — это отношение целого числа к натуральному.

ВверхВниз   Решение


Автор: Якубов А.

В треугольнике ABC медианы AMA, BMB и CMC пересекаются в точке M. Построим окружность ΩA, проходящую через середину отрезка AM и касающуюся отрезка BC в точке MA. Аналогично строятся окружности ΩB и ΩC. Докажите, что окружности ΩA, ΩB и ΩC имеют общую точку.

ВверхВниз   Решение


В круг радиуса 1 помещено два треугольника, площадь каждого из которых больше 1. Докажите, что эти треугольники пересекаются.

ВверхВниз   Решение


Многоугольник площади B вписан в окружность площади A и описан вокруг окружности площади C. Докажите, что  2B $ \leq$ A + C.

ВверхВниз   Решение


Существует ли а) ограниченная, б) неограниченная фигура на плоскости, имеющая среди своих осей симметрии две параллельные несовпадающие прямые?

ВверхВниз   Решение


Автор: Фольклор

При каком натуральном K величина     достигает максимального значения?

ВверхВниз   Решение


Сколько осей симметрии может быть у треугольника?

ВверхВниз   Решение


Докажите, что площадь трапеции равна произведению средней линии на высоту.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 129]      



Задача 54785

Темы:   [ Площадь трапеции ]
[ Средняя линия трапеции ]
Сложность: 3
Классы: 8,9

Докажите, что площадь трапеции равна произведению средней линии на высоту.

Прислать комментарий     Решение


Задача 54964

Тема:   [ Площадь трапеции ]
Сложность: 3
Классы: 8,9

Докажите. что если в трапеции ABCD середину M одной боковой стороны AB соединить с концами другой боковой стороны CD, то площадь полученного треугольника CMD составит половину площади трапеции.

Прислать комментарий     Решение


Задача 54288

Тема:   [ Площадь трапеции ]
Сложность: 3
Классы: 8,9

Прямые, содержащие боковые стороны равнобедренной трапеции, пересекаются под прямым углом. Найдите стороны трапеции, если её площадь равна 12, а высота равна 2.

Прислать комментарий     Решение

Задача 54919

Темы:   [ Площадь трапеции ]
[ Средняя линия трапеции ]
Сложность: 3
Классы: 8,9

В трапеции ABCD ( BC || AD ) известно, что AB = c и расстояние от середины отрезка CD до прямой AB равно d . Найдите площадь трапеции.
Прислать комментарий     Решение


Задача 110855

Темы:   [ Площадь трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Вписанный угол, опирающийся на диаметр ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Через вершины A , B и C трапеции ABCD ( AD|| BC ) проведена окружность. Известно, что окружность касается прямой CD , а её центр лежит на диагонали AC . Найдите площадь трапеции ABCD , если BC=2 , AD=8 .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 129]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .