ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В вершине A единичного квадрата ABCD сидит муравей. Ему надо добраться до точки C, где находится вход в муравейник. Точки A и C разделяет вертикальная стена, имеющая вид равнобедренного прямоугольного треугольника с гипотенузой BD. Найдите длину кратчайшего пути, который надо преодолеть муравью, чтобы попасть в муравейник.

   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 289]      



Задача 66014

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 9,10,11

Существует ли треугольник, для сторон x, y, z которого выполнено соотношение  x³ + y³ + z³ = (x + y)(y + z)(z + x)?

Прислать комментарий     Решение

Задача 73542

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 8,9,10

a, b, c – длины сторон треугольника. Докажите, что  

Прислать комментарий     Решение

Задача 108609

Темы:   [ Сумма длин диагоналей четырехугольника ]
[ Полуинварианты ]
[ Процессы и операции ]
Сложность: 4-
Классы: 8,9

Автор: Колосов В.

На плоскости расположено такое конечное множество точек M, что никакие три точки не лежат на одной прямой. Некоторые точки соединены друг с другом отрезками так, что из каждой точки выходит не более одного отрезка. Разрешается заменить пару пересекающихся отрезков AB и CD парой противоположных сторон AC и BD четырёхугольника ACBD. В полученной системе отрезков разрешается снова произвести подобную замену, и т. д. Может ли последовательность таких замен быть бесконечной?

Прислать комментарий     Решение

Задача 54791

Тема:   [ Неравенство треугольника (прочее) ]
Сложность: 4
Классы: 8,9

В вершине A единичного квадрата ABCD сидит муравей. Ему надо добраться до точки C, где находится вход в муравейник. Точки A и C разделяет вертикальная стена, имеющая вид равнобедренного прямоугольного треугольника с гипотенузой BD. Найдите длину кратчайшего пути, который надо преодолеть муравью, чтобы попасть в муравейник.

Прислать комментарий     Решение


Задача 55148

Тема:   [ Неравенство треугольника ]
Сложность: 4
Классы: 8,9

Докажите, что если точка M лежит внутри треугольника ABC, то MB + MC < AB + AC.

Прислать комментарий     Решение


Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 289]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .