ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Площади треугольников, образованных отрезками диагоналей трапеции и её основаниями, равны S1 и S2. Найдите площадь трапеции.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 102]      



Задача 55026

Темы:   [ Отношение площадей подобных треугольников ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

Площадь трапеции равна 3, основания равны 1 и 2. Найдите площади треугольников, на которые трапеция разделена диагоналями.

Прислать комментарий     Решение


Задача 55442

Темы:   [ Отношение площадей подобных треугольников ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3+
Классы: 8,9

Равнобедренная трапеция, у которой угол при основании равен 60o, описана около окружности. В каком отношении прямая, соединяющая точки касания окружности с боковыми сторонами, делит площадь трапеции.

Прислать комментарий     Решение


Задача 52413

Темы:   [ Отношение площадей подобных треугольников ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4-
Классы: 8,9

Отрезок AB есть диаметр круга, а точка C лежит вне этого круга. Отрезки AC и BC пересекаются с окружностью в точках D и M соответственно. Найдите угол CBD, если площади треугольников DCM и ACB относятся как 1:4.

Прислать комментарий     Решение


Задача 54971

Темы:   [ Отношение площадей подобных треугольников ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4-
Классы: 8,9

Площади треугольников, образованных отрезками диагоналей трапеции и её основаниями, равны S1 и S2. Найдите площадь трапеции.

Прислать комментарий     Решение


Задача 55113

Темы:   [ Отношение площадей подобных треугольников ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC проведены две высоты BM и CN, причём AM : CM = 2 : 3. Найдите отношение площадей треугольников BMN и ABC, если острый угол BAC равен $ \alpha$.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 102]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .