Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 21 задача
Версия для печати
Убрать все задачи

Пусть ABCD – выпуклый четырехугольник. Докажите, что  AB + CD < AC + BD.

Вниз   Решение


Имеется необычный калькулятор. При включении калькулятора на экране возникает дробь 1/1. При нажатии на кнопку * к числителю дроби, изображенной на экране, прибавляется знаменатель, а знаменатель остается прежним. При нажатии на кнопку $ числитель и знаменатель дроби меняются местами. Других кнопок на калькуляторе нет.
  а) Что покажет калькулятор после выполнения следующей последовательности команд:  $ * * * * * * * * * * $ ?
Как добиться того, чтобы калькулятор показал:
  б) 1/2,   в) 7/3,   г) 4/11,   д) 57/91 ?

ВверхВниз   Решение


Найти наибольший общий делитель чисел  2n + 13  и  n + 7.

ВверхВниз   Решение


Функция y = f (x) определена на отрезке [0;1] и в каждой точке этого отрезка имеет первую и вторую производные. Известно, что f (0) = f (1) = 0 и что |f''(x)| ≤ 1 на всём отрезке. Какое наибольшее значение может принимать максимум функции f для всевозможных функций, удовлетворяющих этим условиям?

ВверхВниз   Решение


Существует ли выпуклый четырёхугольник, у которого сумма длин диагоналей не меньше периметра?

ВверхВниз   Решение


Существует ли плоский четырехугольник, у которого тангенсы всех внутренних углов равны?

ВверхВниз   Решение


Найдите двугранные углы трёхгранного угла, плоские углы которого равны 90o , 90o и α .

ВверхВниз   Решение


Четырехугольник имеет ось симметрии. Докажите, что этот четырехугольник либо является равнобедренной трапецией, либо симметричен относительно диагонали.

ВверхВниз   Решение


Дан трёхгранный угол. Рассмотрим три плоскости, содержащие его грани. Эти плоскости разбивают пространство на восемь трёхгранных углов. а) Найдите плоские углы всех образовавшихся трёхгранных углов, если плоские углы исходного трёхгранного угла равны x , y и z . б) Найдите двугранные углы всех образовавшихся трёхгранных углов, если двугранные углы исходного трёхгранного угла равны α , β и γ .

ВверхВниз   Решение


Докажите, что если  α < 0 < β,  то   Sα(x) ≤ S0(x) ≤ Sβ(x),  причём  
Определение средних степенных Sα(x) можно посмотреть в справочнике.

ВверхВниз   Решение


Автор: Фольклор

Внутри круга радиуса R взята точка A. Через неё проведены две перпендикулярные прямые. Потом прямые повернули на угол φ относительно точки A. Хорды, высекаемые окружностью из этих прямых, замели при повороте фигуру, имеющую форму креста с центром в точке A. Найдите площадь креста.

ВверхВниз   Решение


Дан выпуклый четырёхугольник ABCD с попарно непараллельными сторонами. На стороне AD выбирается произвольная точка P, отличная от A и D. Описанные окружности треугольников ABP и CDP вторично пересекаются в точке Q. Докажите, что прямая PQ проходит через фиксированную точку, не зависящую от выбора точки P.

ВверхВниз   Решение


На сторонах треугольника ABC внешним образом построены треугольники ABC', AB'C и A'BC, причем сумма углов при вершинах A', B' и C' кратна  180o. Докажите, что описанные окружности построенных треугольников пересекаются в одной точке.

ВверхВниз   Решение


В треугольник, основание которого равно 48, а высота – 16, вписан прямоугольник с отношением сторон  5 : 9,  причём большая сторона лежит на основании треугольника. Найдите стороны прямоугольника.

ВверхВниз   Решение


Известно, что в некоторую пирамиду можно вписать шар. Докажите, что объём этой пирамиды равен трети произведения радиуса этого шара на полную поверхность пирамиды.

ВверхВниз   Решение


Все плоские углы трёхгранного угла равны 90o . Найдите углы между биссектрисами плоских углов.

ВверхВниз   Решение


Докажите, что выпуклый четырёхгранный угол можно пересечь плоскостью так, чтобы в сечении получился параллелограмм.

ВверхВниз   Решение


Докажите, что площадь проекции куба с ребром 1 на любую плоскость численно равна длине его проекции на прямую, перпендикулярную этой плоскости.

ВверхВниз   Решение



Докажите, что в любой правильной пирамиде все боковые ребра равны.

ВверхВниз   Решение


В треугольнике ABC сторона BC равна полусумме двух других сторон. Через точку A и середины B', C' сторон AB и AC проведена окружность Ω и к ней из центра тяжести треугольника проведены касательные. Доказать, что одна из точек касания является центром I вписанной окружности треугольника ABC.

ВверхВниз   Решение


Произвольный четырехугольник разделен диагоналями на четыре треугольника; площади трех из них равны 10, 20 и 30, и каждая меньше площади четвертого треугольника. Найдите площадь данного четырехугольника.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 86112

Темы:   [ Общие четырехугольники ]
[ Тригонометрия (прочее) ]
Сложность: 2
Классы: 9,10

Существует ли плоский четырехугольник, у которого тангенсы всех внутренних углов равны?
Прислать комментарий     Решение


Задача 55006

Темы:   [ Общие четырехугольники ]
[ Выпуклые многоугольники ]
[ Отношения площадей (прочее) ]
Сложность: 3+
Классы: 8,9

Произвольный четырехугольник разделен диагоналями на четыре треугольника; площади трех из них равны 10, 20 и 30, и каждая меньше площади четвертого треугольника. Найдите площадь данного четырехугольника.

Прислать комментарий     Решение


Задача 115769

Темы:   [ Общие четырехугольники ]
[ Пятиугольники ]
[ Невыпуклые многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Шноль Д.Э.

Невыпуклый n-угольник разрезали прямолинейным разрезом на три части, после чего из двух частей сложили многоугольник, равный третьей части. Может ли n равняться
  а) 5?
  б) 4?

Прислать комментарий     Решение

Задача 116679

Темы:   [ Общие четырехугольники ]
[ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9,10

В четырёхугольнике ABCD угол B равен 150°, угол C прямой, а стороны AB и CD равны.
Найдите угол между стороной BC и прямой, проходящей через середины сторон BC и AD.

Прислать комментарий     Решение

Задача 66475

Темы:   [ Общие четырехугольники ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9,10,11

Дан выпуклый четырёхугольник ABCD с попарно непараллельными сторонами. На стороне AD выбирается произвольная точка P, отличная от A и D. Описанные окружности треугольников ABP и CDP вторично пересекаются в точке Q. Докажите, что прямая PQ проходит через фиксированную точку, не зависящую от выбора точки P.
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .