Страница:
<< 1 2
3 4 >> [Всего задач: 16]
Пусть ABCD и
A1B1C1D1 — два выпуклых четырёхугольника с
соответственно равными сторонами. Докажите, что если
A > A1, то
B < B1,
C > C1,
D < D1.
|
|
Сложность: 5- Классы: 10,11
|
Дан четырёхугольник KLMN. Окружность с центром O пересекает его сторону KL в точках A и A1, сторону LM в точках B и B1, и т.д. Докажите что
а) если описанные окружности треугольников KDA, LAB, MBC и NCD пересекаются в одной точке P, то описанные окружности треугольников KD1A1, LA1B1, MB1C1 и NC1D1 также пересекаются в одной точке Q;
б) точка O лежит на серединном перпендикуляре к PQ.
В выпуклом четырёхугольнике ABCD биссектрисы углов CAD и CBD пересекаются на стороне CD.
Докажите, что биссектрисы углов ACB и ADB пересекаются на стороне AB.
|
|
Сложность: 5- Классы: 8,9,10
|
В четырёхугольнике ABCD стороны AB, BC и CD равны,
M – середина стороны AD. Известно, что ∠BMC = 90°.
Найдите угол между диагоналями четырёхугольника ABCD.
|
|
Сложность: 2+ Классы: 7,8,9
|
Из всякого ли выпуклого четырехугольника можно вырезать параллелограмм, три вершины которого совпадают с тремя вершинами этого четырехугольника?
Страница:
<< 1 2
3 4 >> [Всего задач: 16]