ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Диагональ KM трапеции KLMN в 3 раза длиннее отрезка KP этой диагонали. Основание KN трапеции в 3 раза длиннее основания LM.
Найдите отношение площади трапеции KLMN к площади треугольника KPR, где R – точка пересечения прямой PN и стороны KL.

   Решение

Задачи

Страница: << 142 143 144 145 146 147 148 >> [Всего задач: 829]      



Задача 55074

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Вспомогательные подобные треугольники ]
[ Трапеции (прочее) ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9

Диагональ KM трапеции KLMN в 3 раза длиннее отрезка KP этой диагонали. Основание KN трапеции в 3 раза длиннее основания LM.
Найдите отношение площади трапеции KLMN к площади треугольника KPR, где R – точка пересечения прямой PN и стороны KL.

Прислать комментарий     Решение

Задача 56476

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Две касательные, проведенные из одной точки ]
[ Вспомогательные подобные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 9

В трапецию ABCD  (BC || AD)  вписана окружность, касающаяся боковых сторон AB и CD в точках K и L соответственно, а оснований AD и BC в точках M и N.
  а) Пусть Q – точка пересечения отрезков BM и AN. Докажите, что  KQ || AD.
  б) Докажите, что  AK·KB = CL·LD.

Прислать комментарий     Решение

Задача 56882

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Средняя линия треугольника ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC сторона AB больше стороны BC. Пусть A1 и B1 – середины сторон BC и AC, а B2 и C2 – точки касания вписанной окружности со сторонами AC и AB. Докажите, что отрезки A1B1 и B2C2 пересекаются в точке X, лежащей на биссектрисе угла B.

Прислать комментарий     Решение

Задача 58238

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Подобные фигуры ]
[ Вписанные четырехугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Трапеции (прочее) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10

Докажите, что если выпуклый четырёхугольник ABCD можно разрезать на два подобных четырёхугольника, то ABCD – трапеция или параллелограмм.

Прислать комментарий     Решение

Задача 64450

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанный угол равен половине центрального ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9,10

В треугольнике ABC угол C прямой. На катете CB как на диаметре во внешнюю сторону построена полуокружность, точка N – середина этой полуокружности. Докажите, что прямая AN делит пополам биссектрису CL.

Прислать комментарий     Решение

Страница: << 142 143 144 145 146 147 148 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .