ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Через точку на стороне четырёхугольника проведена прямая, параллельная диагонали, до пересечения с соседней стороной четырёхугольника. Через полученную точку проведена прямая, параллельная другой диагонали, и т.д. Докажите, что пятая точка, полученная таким способом, совпадет с исходной.
В треугольнике ABC известно, что
Можно ли нарисовать эту картинку (см. рис.), не отрывая карандаша от бумаги и проходя по каждой линии по одному разу?
С натуральным числом K производится следующая операция: оно представляется в виде произведения простых сомножителей K = p1p2...pn; затем вычисляется сумма p1 + p2 + ... + pn + 1. С полученным числом производится то же самое, и т.д.
Две окружности пересекаются в точках A и B. Прямая, проходящая через точку A, пересекает окружности в точках M и N, отличных от A, а параллельная ей прямая, проходящая через B, — соответственно в точках P и Q, отличных от B. Докажите, что MN = PQ.
На прямоугольном торте лежит круглая шоколадка. Как разрезать торт на две равные части так, чтобы и шоколадка тоже разделилась ровно пополам? Докажите, что никакой выпуклый многоугольник нельзя разрезать на 100 различных правильных треугольников.
Из квадрата клетчатой бумаги размером
16×16
вырезали одну клетку. Докажите, что полученную фигуру можно
разрезать на "уголки'' из трех клеток.
Дан мешок сахарного песка, чашечные весы и гирька в 1 г. Можно ли за 10 взвешиваний отмерить 1 кг сахара? Рассматривается последовательность 1, ½, ⅓, ¼, ⅕, ⅙, 1/7, ... Существует ли арифметическая прогрессия
Даны две единичные окружности ω1 и ω2, пересекающиеся в точках A и B. На окружности ω1 взяли произвольную точку M, а на окружности ω2 точку N. Через точки M и N провели ещё две единичные окружности ω3 и ω4. Обозначим повторное пересечение ω1 и ω3 через C, повторное пересечение окружностей ω2 и ω4 – через D. Докажите, что ACBD – параллелограмм. Окружность радиуса r касается сторон многоугольника
в точках
A1,..., An, причем длина стороны, на которой лежит
точка Ai, равна ai. Точка X удалена от центра окружности на
расстояние d. Докажите, что
a1XA12 + ... + anXAn2 = P(r2 + d2),
где P — периметр многоугольника.
Пусть CK — биссектриса треугольника ABC и AC > BC. Докажите, что угол AKC — тупой.
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 122]
В треугольнике ABC известно, что AB < BC < AC, а один из углов вдвое меньше другого и втрое меньше третьего. Найдите угол при вершине A.
Докажите, что:
Докажите, что в прямоугольном треугольнике каждый катет меньше гипотенузы.
Серединный перпендикуляр к стороне BC
треугольника ABC пересекает сторону AB в точке D ,
а продолжение стороны AC за точку A – в точке E .
Докажите, что AD
Пусть CK — биссектриса треугольника ABC и AC > BC. Докажите, что угол AKC — тупой.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 122]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке