ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Одна из сторон треугольника равна 6, вторая сторона равна 2
Найдите сторону квадрата, вписанного в окружность, если известно, что хорда этой окружности, равная 2, удалена от её центра на расстояние, равное 3. Пусть I – центр вписанной окружности треугольника ABC, M, N – середины дуг ABC и BAC описанной окружности. Докажите неравенство Коши для пяти чисел, то есть докажите, что при a, b, c , d e ≥ 0 имеет место неравенство
Докажите, что предпоследняя цифра степени тройки всегда чётна. В трапеции большее основание равно 5, одна из боковых сторон равна 3. Известно, что одна из диагоналей перпендикулярна заданной боковой стороне, а другая делит угол между заданной боковой стороной и основанием пополам. Найдите площадь трапеции. Докажите, что средняя линия трапеции параллельна основаниям и равна их полусумме. Докажите, что если в четырехугольнике два противоположные угла тупые, то диагональ, соединяющая вершины этих углов, меньше другой диагонали. Продолжения боковых сторон AB и CD трапеции ABCD пересекаются в точке E. Найдите стороны треугольника AED, если AB = 3, BC = 10, CD = 4, AD = 12. Дан выпуклый четырёхугольник ABCD, в котором ∠DAB = 90°. Пусть M – середина стороны BC. Оказалось. что ∠ADC = ∠BAM.
С помощью циркуля и линейки постройте треугольник по стороне и медианам, проведённым к двум другим сторонам.
Через точку O пересечения медиан треугольника ABC проведена прямая, пересекающая его стороны в точках M и N. Докажите, что NO ≤ 2MO. |
Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 517]
В параллелограмме ABCD сторона AB равна 6, а высота, проведённая к основанию AD, равна 3. Биссектриса угла BAD пересекает сторону BC в точке M, причём MC = 4. N – точка пересечения биссектрисы AM и диагонали BD. Найдите площадь треугольника BNM.
В параллелограмме ABCD на стороне AB взята точка M, причём
AB = 3AM. N – точка пересечения прямых AC и DM.
В параллелограмме ABCD известно, что AB = 4, AD = 6. Биссектриса угла BAD пересекает сторону BC в точке M, при этом AM = 4
Диагональ KM трапеции KLMN в 3 раза длиннее отрезка KP
этой диагонали. Основание KN трапеции в 3 раза длиннее основания LM.
Через точку O пересечения медиан треугольника ABC проведена прямая, пересекающая его стороны в точках M и N. Докажите, что NO ≤ 2MO.
Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 517]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке