Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Найдите остаток от деления 6100 на 7.

Вниз   Решение


Известно, что  b – c > a  и  а ≠ 0.  Обязательно ли уравнение  ax² + bx + c = 0  имеет два корня?

ВверхВниз   Решение


Докажите, что для любой бесконечной цепной дроби   [a0; a1, ..., an, ...]  существует предел её подходящих дробей – иррациональное число α. Объясните, почему если это число α разложить в бесконечную цепную дробь при помощи алгоритма задачи 60606, то получится бесконечная цепная дробь, равная исходной.

ВверхВниз   Решение


Пусть ma и mb — медианы, проведенные к сторонам a и b треугольника со сторонами a, b, c. Докажите, что m2a + m2b > $ {\frac{9}{8}}$c2.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



Задача 57433

Тема:   [ Длины сторон (неравенства) ]
Сложность: 5
Классы: 8,9

Докажите, что если a, b, c — длины сторон треугольника периметра 2, то  a2 + b2 + c2 < 2(1 - abc).
Прислать комментарий     Решение


Задача 57434

Тема:   [ Длины сторон (неравенства) ]
Сложность: 6
Классы: 8,9

Докажите, что  20Rr - 4r2 $ \leq$ ab + bc + ca $ \leq$ 4(R + r)2.
Прислать комментарий     Решение


Задача 108588

Темы:   [ Площадь четырехугольника ]
[ Длины сторон (неравенства) ]
Сложность: 3
Классы: 8,9

Докажите, что сумма расстояний от любой точки до всех вершин выпуклого четырёхугольника площади 1, не может быть меньше 2 .
Прислать комментарий     Решение


Задача 55208

Темы:   [ Неравенство треугольника ]
[ Длины сторон (неравенства) ]
Сложность: 3+
Классы: 8,9

Докажите, что если a, b, c — стороны произвольного треугольника, то a2 + b2 > $ {\frac{c^{2}}{2}}$.

Прислать комментарий     Решение


Задача 55209

Темы:   [ Неравенство треугольника ]
[ Длины сторон (неравенства) ]
Сложность: 3+
Классы: 8,9

Пусть ma и mb — медианы, проведенные к сторонам a и b треугольника со сторонами a, b, c. Докажите, что m2a + m2b > $ {\frac{9}{8}}$c2.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .