ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Числа a и b таковы, что каждый из двух квадратных трёхчленов x² + ax + b и x² + bx + a имеет по два различных корня, а произведение этих трёхчленов имеет ровно три различных корня. Найдите все возможные значения суммы этих трёх корней. На стороне AB квадрата ABCD построили (снаружи) равносторонний треугольник AKB. Найдите радиус окружности, описанной около треугольника CKD, если AB=1.
Внутри треугольника ABC взята точка M. Докажите, что
AM . BC + BM . AC + CM . AB
где S — площадь треугольника ABC.
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]
В выпуклом четырёхугольнике ABCD заключены две окружности одинакового радиуса r, касающиеся друг друга внешним образом. Центр первой окружности находится на отрезке, соединяющем вершину A с серединой F стороны CD, а центр второй окружности находится на отрезке, соединяющем вершину C с серединой E стороны AB. Первая окружность касается сторон AB, AD и CD, а вторая окружность касается сторон AB, BC и CD. Найдите AC.
Точка D – середина основания AC равнобедренного треугольника ABC . Точка E – основание перпендикуляра, опущенного из точки D на сторону BC . Отрезки AE и BD пересекаются в точке F . Установите, какой из отрезков BF и BE длиннее.
Докажите, что биссектриса треугольника не меньше высоты и не больше медианы, проведённых из той же вершины.
Внутри треугольника ABC взята точка M. Докажите, что
AM . BC + BM . AC + CM . AB
где S — площадь треугольника ABC.
Точка E стороны BC и точка F стороны AD выпуклого четырёхугольника ABCD расположены так, что BE = 2EC, AF = 2FD. На отрезке AE находится центр окружности радиуса r, касающейся сторон AB, BC и CD. На отрезке BF находится центр окружности такого же радиуса r, касающейся сторон AB, AD и CD. Найдите площадь четырёхугольника ABCD, зная, что указанные окружности внешним образом касаются друг друга.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке