ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть точка C – середина дуги AB некоторой окружности, а D – любая другая точка этой дуги.
Докажите, что  AC + BC > AD + BD.

   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 207]      



Задача 52859

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол равен половине центрального ]
[ Четыре точки, лежащие на одной окружности ]
[ Три точки, лежащие на одной прямой ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3+
Классы: 8,9

Точки K и P симметричны основанию H высоты BH треугольника ABC относительно его сторон AB и BC.
Докажите, что точки пересечения отрезка KP со сторонами AB и BC (или их продолжениями) – основания высот треугольника ABC.

Прислать комментарий     Решение

Задача 53265

Темы:   [ Теорема синусов ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9

Диаметр AB окружности продолжили за точку B и на продолжении отметили точку C. Из точки C провели секущую под углом к AC в 7o, пересекающую окружность в точках D и E, считая от точки C. Известно, что DC = 3, а угол DAC равен 30o. Найдите диаметр окружности.

Прислать комментарий     Решение


Задача 55234

Темы:   [ Неравенство треугольника ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9

Пусть точка C – середина дуги AB некоторой окружности, а D – любая другая точка этой дуги.
Докажите, что  AC + BC > AD + BD.

Прислать комментарий     Решение

Задача 55475

Темы:   [ Пересекающиеся окружности ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9

Окружности S1 и S2 пересекаются в точках A и B. Через точку A проведена прямая, пересекающая эти окружности соответственно в точках C1 и C2, отличных от A.
Докажите, что отрезок C1C2 виден из точки B под одним и тем же углом для любой прямой C1C2.

Прислать комментарий     Решение

Задача 64739

Темы:   [ ГМТ - прямая или отрезок ]
[ Вписанный угол равен половине центрального ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 3+
Классы: 8,9,10

Прямая, проходящая через вершину B треугольника ABC, пересекает сторону AC в точке K, а описанную окружность в точке M.
Найдите геометрическое место центров описанных окружностей треугольников AMK.

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 207]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .