ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Диагонали четырёхугольника ABCD, вписанного в окружность, пересекаются в точке E. На прямой AC взята точка M, причём ∠DME = 80°, ∠ABD = 60°, |
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1274]
Из внешней точки A проведены к кругу касательная AB и секущая ACD. Найдите площадь треугольника CBD, если AC : AB = 2 : 3 и площадь треугольника ABC равна 20.
Две окружности пересекаются в точках A и B. Из точки A к
этим окружностям проведены касательные AM и AN(M и N – точки окружностей). Докажите, что
Диагонали четырёхугольника ABCD, вписанного в окружность,
пересекаются в точке E. На прямой AC взята точка M, причём
∠BME = 70°, ∠ADB = 50°,
Диагонали четырёхугольника ABCD, вписанного в окружность, пересекаются в точке E. На прямой AC взята точка M, причём ∠DME = 80°, ∠ABD = 60°,
Диагонали четырёхугольника PQRS, вписанного в окружность, пересекаются в точке D. На прямой PR взята точка A, причём
∠SAD = 50°, ∠PQS = 70°,
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1274] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|