Страница:
<< 29 30 31 32
33 34 35 >> [Всего задач: 1275]
На хорде AB окружности S с центром O взята
точка C. Описанная окружность треугольника AOC пересекает
окружность S в точке D.
Докажите, что BC = CD.
|
|
Сложность: 3+ Классы: 9,10,11
|
На сторонах прямоугольного треугольника ABC построены во внешнюю сторону квадраты с центрами D, E, F.
Докажите, что отношение SDEF : SABC а) больше 1; б) не меньше 2.
|
|
Сложность: 3+ Классы: 9,10
|
Внутри угла AOB взята точка C, опущены перпендикуляры CD на сторону OA и CE на сторону OB. Затем опущены перпендикуляры EM на сторону OA и DN на сторону OB. Доказать, что OC ⊥ MN.
В трапеции
CDEA основание
CA = 15, основание
DE = 9,
DA = 13. На
описанной около трапеции
CDEA окружности взята отличная от
A точка
B так, что
DB = 13. Найдите длину отрезка
CB и площадь пятиугольника
ABCDE.
Известно, что вершины квадрата T принадлежат прямым, содержащим
стороны квадрата P, а вписанная окружность квадрата T совпадает
с описанной окружностью квадрата P. Найдите углы восьмиугольника,
образованного вершинами квадрата P и точками касания окружности со
сторонами квадрата T, и величины дуг, на которые вершины восьмиугольника
делят окружность.
Страница:
<< 29 30 31 32
33 34 35 >> [Всего задач: 1275]