ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В прямоугольном треугольнике ABC угол ACB – прямой. Пусть E – точка пересечения биссектрисы угла ABC со стороной AC. Точка D – середина стороны AB, O – точка пересечения отрезков BE и CD. Через точку O проведён перпендикуляр к BO до пересечения со стороной BC в точке F. Известно, что На клетчатой доске размером 23×23 клетки стоят четыре фишки: в левом нижнем и в правом верхнем углах доски – по белой фишке, а в левом верхнем и в правом нижнем углах - по чёрной. Белые и чёрные фишки ходят по очереди, начинают белые. Каждым ходом одна из фишек сдвигается на любую соседнюю (по стороне) свободную клетку. Белые фишки стремятся попасть в две соседние по стороне клетки. Могут ли чёрные им помешать? В треугольнике ABC проведены биссектрисы AD
и BE. Найдите величину угла C, если известно, что
AD . BC = BE . AC и AC Пусть p – простое число и представление числа n
в p-ичной системе имеет вид: n = akpk + ak–1pk–1 + ... + a1p1 + a0. На полях A, B и C в левом нижнем углу шахматной доски стоят белые ладьи (см. рис.). Разрешается делать ходы по обычным правилам, однако после любого хода каждая ладья должна быть под защитой какой-нибудь другой ладьи. Можно ли за несколько ходов переставить ладьи так, чтобы каждая попала на обозначенное той же буквой поле в правом верхнем углу? В остроугольном треугольнике ABC на высоте AD взята точка M, а на высоте BP – точка N так, что углы BMC и ANC – прямые. Расстояние между точками M и N равно 4 + 2
Даны отрезки a и b. С помощью циркуля и линейки постройте отрезок
В прямоугольном треугольнике ABC точка D – середина высоты, опущенной на гипотенузу AB. Прямые, симметричные AB относительно AD и BD, пересекаются в точке F. Найдите отношение площадей треугольников ABF и ABC.
В трапеции ABCD точки K и M являются соответственно серединами оснований AB = 5 и CD = 3. Найдите площадь трапеции, если треугольник AMB — прямоугольный, а DK — высота трапеции.
Высота CD треугольника ABC делит сторону AB на отрезки AD и BD, причём AD . BD = CD2. Верно ли, что треугольник ABC прямоугольный?
В прямоугольный треугольник вписан квадрат так, что одна из его сторон находится на гипотенузе. Боковые отрезки гипотенузы равны m и n. Найдите площадь квадрата.
Доказать, что если целое n > 1, то 11·2²·3³·...·nn < nn(n+1)/2.
На отрезке AC взята точка B. На AB и AC как на диаметрах построены окружности. К отрезку AC в точке B проведён перпендикуляр BD до пересечения с большей окружностью в точке D. Из точки C проведена касательная CK к меньшей окружности. Докажите, что CD = CK.
|
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 159]
На отрезке AC взята точка B. На AB и AC как на диаметрах построены окружности. К отрезку AC в точке B проведён перпендикуляр BD до пересечения с большей окружностью в точке D. Из точки C проведена касательная CK к меньшей окружности. Докажите, что CD = CK.
К данной окружности проведены две параллельные касательные и третья касательная, пересекающая их. Докажите, что радиус окружности есть среднее геометрическое отрезков третьей касательной.
Диаметр AB окружности равен 1. На нем отложен отрезок AC, равный a. Проведена также хорда AD, равная b. Из точки C восстановлен перпендикуляр к AB, пересекающий хорду AD в точке E, а из точки D опущен перпендикуляр DF на AB (см. рисунок). Оказалось, что AE = AF. Докажите, что a = b3.
Окружность радиуса 2 касается внешним образом другой окружности в точке A. Общая касательная к обеим окружностям, проведённая через точку A, пересекается с другой их общей касательной в точке B. Найдите радиус второй окружности, если AB = 4.
С помощью циркуля и линейки по данным отрезкам a, h и m постройте треугольник ABC со стороной BC = a, высотой BH = h и медианой а) BM = m; б) AM = m.
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 159]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке