Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Что больше: 300! или 100300?

Вниз   Решение


Натуральное число увеличили на 10% и снова получили натуральное число. Могла ли при этом сумма цифр уменьшиться ровно на 10%?

ВверхВниз   Решение


Вычислите $\int_0^{\pi /2}(\sin ^2 (\sin x)+ \cos^2(\cos x)) dx$.

ВверхВниз   Решение


Автор: Ивлев Ф.

В отель ночью приехали $100$ туристов. Они знают, что в отеле есть одноместные номера $1$, $2, \ldots, n$, из которых $k$ на ремонте (но неизвестно какие), а остальные свободны. Туристы могут заранее договориться о своих действиях, после чего по очереди уходят заселяться: каждый проверяет номера в любом порядке, находит первый свободный номер не на ремонте и остаётся там ночевать. Но туристы не хотят беспокоить друг друга: нельзя проверять номер, куда уже кто-то заселился. Для каждого $k$ укажите наименьшее $n$, при котором туристы гарантированно смогут заселиться, не потревожив друг друга.

ВверхВниз   Решение


Две окружности касаются друг друга внешним образом в точке A. Найдите радиусы окружностей, если хорды, соединяющие точку A с точками касания с одной из общих внешних касательных, равны 6 и 8.

ВверхВниз   Решение


В треугольнике ABC на сторонах AB и BC выбраны соответственно точки A1 и C1, причём A1B : AB = 1 : 2 и BC1 : BC = 1 : 4. Через точки A1, B и C1 проведена окружность. Через точку A1 проведена прямая, пересекающая отрезок BC1 в точке D, а окружность в точке E. Найдите площадь треугольника A1C1E, если BC1 = 6, BD = 2, DE = 3, а площадь треугольника ABC равна 32.

ВверхВниз   Решение


Пусть характеристическое уравнение (11.3 ) последовательности (11.2) имеет комплексные корни x1, 2 = a±ib = re±i$\scriptstyle \varphi$. Докажите, что для некоторой пары чисел c1, c2 будет выполняться равенство

an = rn(c1cos n$\displaystyle \varphi$ + c2sin n$\displaystyle \varphi$).


ВверхВниз   Решение


В треугольнике ABC угол при вершине A равен 60o. Через точки B, C и точку D, лежащую на стороне AB, проведена окружность, пересекающая сторону AC в точке E. Найдите AE, если AD = 3, BD = 1 и EC = 4. Найдите радиус окружности.

ВверхВниз   Решение


Пусть CM – медиана треугольника ABC. Известно, что  ∠A + ∠MCB = 90°.  Докажите, что треугольник ABC – равнобедренный или прямоугольный.

Вверх   Решение

Задачи

Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 604]      



Задача 55187

Темы:   [ Неравенство треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Докажите, что если D – середина основания BC равнобедренного треугольника ABC, а M – произвольная точка на стороне AC, то  DB – DM < AB – AM.

Прислать комментарий     Решение

Задача 55303

Темы:   [ Теорема синусов ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Основание равнобедренного треугольника равно a, угол при вершине равен α. Найдите биссектрису, проведённую к боковой стороне.

Прислать комментарий     Решение

Задача 55384

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
[ Хорды и секущие (прочее) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC поведены медианы AA1 и BB1. Докажите, что если  ∠CAA1 = ∠CBB1,  то  AC = BC.

Прислать комментарий     Решение

Задача 55456

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Докажите, что прямая, соединяющая середины дуг AB и AC, где A, B, и C – три точки одной окружности, отсекает на хордах AB и AC равные отрезки, считая от точки A.

Прислать комментарий     Решение

Задача 55545

Темы:   [ Вспомогательная окружность ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Пусть CM – медиана треугольника ABC. Известно, что  ∠A + ∠MCB = 90°.  Докажите, что треугольник ABC – равнобедренный или прямоугольный.

Прислать комментарий     Решение

Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 604]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .