Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Докажите, что при гомотетии окружность переходит в окружность.

Вниз   Решение


Можно ли разложить на множители с целыми коэффициентами многочлен  x4 + x3 + x2 + x + 12?

ВверхВниз   Решение


Докажите, что если фигура имеет две перпендикулярные оси симметрии, то она имеет центр симметрии.

ВверхВниз   Решение


Докажите, что окружность при осевой симметрии переходит в окружность.

ВверхВниз   Решение


Дан квадрат ABCD, M и N – середины сторон BC и AD. На продолжении диагонали AC за точку A взяли точку K. Отрезок KM пересекает сторону AB
в точке L. Докажите, что углы KNA и LNA равны.

ВверхВниз   Решение


Докажите, что точки, симметричные произвольной точке относительно середин сторон квадрата, являются вершинами некоторого квадрата.

ВверхВниз   Решение


а) Дано шесть натуральных чисел. Все они различны и дают в сумме 22. Найти эти числа и доказать, что других нет.

б) Тот же вопрос про 100 чисел, дающих в сумме 5051.

ВверхВниз   Решение


Окружность, построенная на основании BC трапеции ABCD как на диаметре, проходит через середины диагоналей AC и BD трапеции и касается основания AD. Найдите углы трапеции.

ВверхВниз   Решение


В стране каждые два города соединены дорогой с односторонним движением.
Доказать, что существует город, из которого можно проехать в любой другой не более чем по двум дорогам.

ВверхВниз   Решение


Десять человек сидят за круглым столом. Сумма в десять долларов должна быть распределена среди них так, чтобы каждый получил половину от той суммы, которую два его соседа получили вместе. Однозначно ли это правило задает распределение денег?

ВверхВниз   Решение


Десяти ребятам положили в тарелки по 100 макаронин. Есть ребята не хотели и стали играть. Одним действием кто-то из детей перекладывает из своей тарелки по одной макаронине всем другим детям. После какого наименьшего количества действий у всех в тарелках может оказаться разное количество макаронин?

ВверхВниз   Решение


Основание равнобедренного треугольника равно a, угол при вершине равен α. Найдите биссектрису, проведённую к боковой стороне.

ВверхВниз   Решение


Сто положительных чисел записаны по кругу. Квадрат каждого числа равен сумме двух чисел, стоящих за этим числом по часовой стрелке.
Какие числа могут быть записаны?

ВверхВниз   Решение


Сколько существует различных пирамид, все рёбра которых равны 1?

ВверхВниз   Решение


Расставьте по кругу шесть различных чисел так, чтобы каждое из них равнялось произведению двух соседних.

ВверхВниз   Решение


Диагонали трапеции взаимно перпендикулярны. Докажите, что произведение длин оснований трапеции равно сумме произведений длин отрезков одной диагонали и длин отрезков другой диагонали, на которые они делятся точкой пересечения.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 167]      



Задача 116284

Темы:   [ Трапеции (прочее) ]
[ Угол между касательной и хордой ]
[ Инверсия помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
Сложность: 5-
Классы: 9,10,11

Автор: Ивлев Ф.

Боковые стороны AB и CD трапеции ABCD являются соответственно хордами окружностей ω1 и ω2, касающихся друг друга внешним образом. Градусные меры касающихся дуг AB и CD равны α и β. Окружности ω3 и ω4 также имеют хорды AB и CD соответственно. Их дуги AB и CD, расположенные с той же стороны от хорд, что соответствующие дуги первых двух окружностей, имеют градусные меры β и α. Докажите, что ω3 и ω4 тоже касаются.

Прислать комментарий     Решение

Задача 54700

Темы:   [ Теорема косинусов ]
[ Трапеции (прочее) ]
Сложность: 2+
Классы: 8,9

Угол при вершине D трапеции ABCD с основаниями AD и BC равен 60o. Найдите диагонали трапеции, если AD = 10, BC = 3 и CD = 4.

Прислать комментарий     Решение


Задача 53743

Темы:   [ Признаки подобия ]
[ Трапеции (прочее) ]
Сложность: 3-
Классы: 8,9

Основания трапеции равны 1,8 и 1,2; боковые стороны, равные 1,5 и 1,2, продолжены до взаимного пересечения.
Найдите, насколько продолжены боковые стороны.

Прислать комментарий     Решение

Задача 53882

Темы:   [ Подобные треугольники (прочее) ]
[ Трапеции (прочее) ]
Сложность: 3-
Классы: 8,9

Продолжения боковых сторон AB и CD трапеции ABCD пересекаются в точке E. Найдите стороны треугольника AED, если  AB = 3,  BC = 10,  CD = 4,  AD = 12.

Прислать комментарий     Решение

Задача 53072

Темы:   [ Прямые, касающиеся окружностей (прочее) ]
[ Трапеции (прочее) ]
Сложность: 3
Классы: 8,9

Окружность, построенная на основании BC трапеции ABCD как на диаметре, проходит через середины диагоналей AC и BD трапеции и касается основания AD. Найдите углы трапеции.

Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 167]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .