Версия для печати
Убрать все задачи
Биссектриса внешнего угла при вершине
C треугольника
ABC
пересекает описанную окружность в точке
D. Докажите, что
AD =
BD.

Решение
Назовём лестницей высоты n фигуру, состоящую из всех клеток квадрата n×n, лежащих не выше диагонали (на рисунке показана лестница высоты 4). Сколькими различными способами можно разбить лестницу высоты n на несколько прямоугольников, стороны которых идут по линиям сетки, а площади попарно различны?


Решение
Даны точки
M(2
;-5
;0)
,
N(3
;0
;4)
,
K(
-2
;2
;0)
и
L(3
;2
;1)
.
Найдите расстояние от точки
L до плоскости
MNK .


Решение
Через точку A , лежащую на окружности с центром O, проведены диаметр AB и хорда AC. Докажите, что угол BAC вдвое меньше угла BOC.


Решение
Квадратная коробка конфет разбита на 49 равных квадратных ячеек. В каждой ячейке лежит шоколадная конфета – либо чёрная, либо белая. За один присест Саша может съесть две конфеты, если они одного цвета и лежат в соседних по стороне или по углу ячейках. Какое наибольшее количество конфет гарантированно может съесть Саша, как бы ни лежали конфеты в коробке?


Решение
Прямые
AA1,
BB1,
CC1 пересекаются в одной точке
O.
Докажите, что точки пересечения прямых
AB и
A1B1,
BC
и
B1C1,
AC и
A1C1 лежат на одной прямой (Дезарг).

Решение