ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1, причем прямые AA1, BB1 и CC1 пересекаются в одной точке P. Докажите, что прямые AA2, BB2 и CC2, симметричные этим прямым относительно соответствующих биссектрис, тоже пересекаются в одной точке Q.

   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 107]      



Задача 56924

Темы:   [ Теоремы Чевы и Менелая ]
[ Теорема синусов ]
[ Свойства симметрий и осей симметрии ]
[ Свойства биссектрис, конкуррентность ]
[ Изогональное сопряжение ]
Сложность: 6
Классы: 9,10,11

На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1, причем прямые AA1, BB1 и CC1 пересекаются в одной точке P. Докажите, что прямые AA2, BB2 и CC2, симметричные этим прямым относительно соответствующих биссектрис, тоже пересекаются в одной точке Q.
Прислать комментарий     Решение


Задача 58133

Темы:   [ Выпуклые многоугольники ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Свойства симметрий и осей симметрии ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 6
Классы: 8,9,10,11

Докажите, что симметризация по Штейнеру выпуклого многоугольника является выпуклым многоугольником.
Прислать комментарий     Решение


Задача 65799

Темы:   [ Построение треугольников по различным точкам ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Вписанные и описанные окружности ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3+
Классы: 8,9

Восстановите треугольник ABC по вершине B, центру тяжести и точке пересечения L симедианы, проведённой из вершины B, с описанной окружностью.

Прислать комментарий     Решение

Задача 66101

Темы:   [ Биссектриса угла ]
[ Вписанные и описанные окружности ]
[ Вписанный угол равен половине центрального ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3+
Классы: 8,9

Из вершины A остроугольного треугольника ABC по биссектрисе угла A выпустили бильярдный шарик, который отразился от стороны BC по закону "угол падения равен углу отражения" и дальше катился по прямой, уже ни от чего не отражаясь. Докажите, что если  ∠A = 60°,  то траектория шарика проходит через центр описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 66310

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Свойства симметрий и осей симметрии ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 4-
Классы: 9,10

Пусть BHb, CHc – высоты треугольника ABC. Прямая HbHc пересекает описанную окружность Ω треугольника ABC в точках X и Y. Точки P и Q симметричны X и Y относительно AB и AC соответственно. Докажите, что  PQ || BC.

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 107]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .