Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Докажите, что произведение всех целых чисел от  21917 + 1  до  21991 – 1  включительно не есть квадрат целого числа.

Вниз   Решение


Докажите, что при центральной симметрии окружность переходит в окружность.

ВверхВниз   Решение


Докажите, что в правильный пятиугольник можно так вписать квадрат, что его вершины будут лежать на четырёх сторонах пятиугольника.

ВверхВниз   Решение


Докажите, что многочлен  x44 + x33 + x22 + x11 + 1  делится на   x4 + x3 + x2 + x + 1.

ВверхВниз   Решение


Чему равно произведение  

ВверхВниз   Решение


Точка D – середина гипотенузы AB прямоугольного треугольника ABC. Окружность, вписанная в треугольник ACD, касается отрезка CD в его середине. Найдите острые углы треугольника ABC.

ВверхВниз   Решение


Докажите, что биссектрисы треугольника пересекаются в одной точке.

ВверхВниз   Решение


Петя взял произвольное натуральное число, умножил его на 5, результат снова умножил на 5, потом ещё на 5, и так далее.
Верно ли, что с какого-то момента все получающиеся у Пети числа будут содержать 5 в своей десятичной записи?

ВверхВниз   Решение


К окружности, вписанной в квадрат со стороной a, проведена касательная, пересекающая две его стороны. Найдите периметр отсечённого треугольника.

ВверхВниз   Решение


Докажите, что при параллельном переносе окружность переходит в окружность.

ВверхВниз   Решение


а) Найдите ГМТ, равноудаленных от двух параллельных прямых.
б) Найдите ГМТ, равноудаленных от двух пересекающихся прямых.

ВверхВниз   Решение


Вставьте вместо каждой звездочки цифру так, чтобы произведение трех десятичных дробей равнялось натуральному числу. Использовать ноль нельзя, зато остальные цифры могут повторяться. $${\ast}{,}{\ast} \cdot {\ast}{,}{\ast} \cdot {\ast}{,}{\ast} = {\ast}$$

ВверхВниз   Решение


Разложить на множители:  (b – c)³ + (c – a)³ + (a – b)³.

ВверхВниз   Решение


а) Докажите, что сумма углов при вершинах выпуклого n-угольника равна  (n - 2) . 180o.
б) Выпуклый n-угольник разрезан непересекающимися диагоналями на треугольники. Докажите, что количество этих треугольников равно n - 2.

ВверхВниз   Решение


Из тридцати пунктов A1, A2, ..., A30, расположенных на прямой MN на равных расстояниях друг от друга, выходят тридцать прямых дорог. Эти дороги располагаются по одну сторону от прямой MN и образуют с MN следующие углы:

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
$\displaystyle \alpha$ 60o 30o 15o 20o 155o 45o 10o 35o 140o 50o 125o 65o 85o 86o 80o
  16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
$\displaystyle \alpha$ 75o 78o 115o 95o 25o 28o 158o 30o 25o 5o 15o 160o 170o 20o 158o
                               

Из всех тридцати пунктов выезжают одновременно тридцать автомобилей, едущих, никуда не сворачивая, по этим дорогам с одинаковой скоростью. На каждом из перекрёстков установлено по шлагбауму. Как только первая по времени машина проезжает перекрёсток, шлагбаум закрывается и преграждает путь всем следующим машинам, попадающим на этот перекрёсток. Какие из машин проедут все перекрёстки на своём пути, а какие застрянут?

ВверхВниз   Решение


Найдите геометрическое место таких точек X, что касательные, проведенные из X к данной окружности, имеют данную длину.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 9746]      



Задача 57124

Тема:   [ ГМТ (прочее) ]
Сложность: 2-
Классы: 7

а) Найдите ГМТ, равноудаленных от двух параллельных прямых.
б) Найдите ГМТ, равноудаленных от двух пересекающихся прямых.
Прислать комментарий     Решение


Задача 57125

Тема:   [ ГМТ (прочее) ]
Сложность: 2-
Классы: 7

Найдите геометрическое место середин отрезков с концами на двух данных параллельных прямых.
Прислать комментарий     Решение


Задача 57126

Тема:   [ ГМТ (прочее) ]
Сложность: 2-
Классы: 7

Дан треугольник ABC. Найдите ГМТ X, удовлетворяющих неравенствам  AX $ \leq$ BX $ \leq$ CX.
Прислать комментарий     Решение


Задача 57127

Тема:   [ ГМТ (прочее) ]
Сложность: 2-
Классы: 7

Найдите геометрическое место таких точек X, что касательные, проведенные из X к данной окружности, имеют данную длину.
Прислать комментарий     Решение


Задача 57128

Тема:   [ ГМТ (прочее) ]
Сложность: 2-
Классы: 7

На окружности фиксирована точка A. Найдите ГМТ X, делящих хорды с концом A в отношении 1 : 2, считая от точки A.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 9746]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .