|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Известно, что число a + 1/a – целое. Докажите, что число a² + 1/a² – тоже целое. Простым или составным является число 100² + 201? На стороне AB четырехугольника ABCD взята точка M1. Пусть M2 — проекция M1 на прямую BC из D, M3 — проекция M2 на CD из A, M4 — проекция M3 на DA из B, M5 — проекция M4 на AB из C и т. д. Докажите, что M13 = M1 (а значит, M14 = M2, M15 = M3 и т. д.). На доске написано число 1. Два игрока по очереди прибавляют любое число от 1 до 5 к числу на доске и записывают вместо него сумму. Выигрывает игрок, который первый запишет на доске число тридцать. Укажите выигрышную стратегию для второго игрока. В выражении x6 + x4 + xA замените А на одночлен так, чтобы получился полный квадрат. Найдите как можно больше решений. Даны две точки A и B. Две окружности касаются прямой AB (одна — в точке A, другая — в точке B) и касаются друг друга в точке M. Найдите ГМТ M. |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 497]
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 497] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|