ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Постройте треугольник ABC, зная три точки A', B', C', симметричные точке пересечения высот треугольника относительно сторон BC, CA, AB (оба треугольника остроугольные).

   Решение

Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 484]      



Задача 57225

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 3+
Классы: 8,9

Постройте треугольник ABC, зная три точки A', B', C', симметричные точке пересечения высот треугольника относительно сторон BC, CA, AB (оба треугольника остроугольные).
Прислать комментарий     Решение


Задача 66405

Темы:   [ Вписанный угол (построения) ]
[ Биссектриса делит дугу пополам ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

Автор: Кноп К.А.

Даны треугольник ABC (AB > AC) и описанная около него окружность. Постройте циркулем и линейкой середину дуги BC (не содержащей вершину A), проведя не более двух линий.
Прислать комментарий     Решение


Задача 67029

Темы:   [ Построения (прочее) ]
[ Показательные функции и логарифмы (прочее) ]
Сложность: 3+
Классы: 9,10,11

В декартовой системе координат (с одинаковым масштабом по осям $x$ и $y$) нарисовали график показательной функции $y=3^x$. Затем ось $y$ и все отметки на оси $x$ стёрли. Остались лишь график функции и ось $x$ без масштаба и отметки 0. Каким образом с помощью циркуля и линейки можно восстановить ось $y$?
Прислать комментарий     Решение


Задача 67092

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 3+
Классы: 8,9,10,11

На стороне $AC$ треугольника $ABC$ во внешнюю сторону был построен квадрат с центром $F$. Затем всё стерли, кроме точки $F$ и середин $N$, $K$ сторон $BC$, $AB$ соответственно. Восстановите треугольник.
Прислать комментарий     Решение


Задача 67115

Темы:   [ Построения (прочее) ]
[ Гомотетия помогает решить задачу ]
[ Касающиеся окружности ]
Сложность: 3+
Классы: 8,9,10,11

Даны две окружности, пересекающиеся в точках $A$, $B$, и точка $O$, лежащая вне их. Циркулем и линейкой постройте такой луч с началом $O$, пересекающий первую окружность в точке $C$, а вторую – в точке $D$, чтобы отношение $OC:OD$ было максимальным.
Прислать комментарий     Решение


Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 484]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .