ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Проведите через данную точку M прямую так, чтобы она отсекала от данного угла с вершиной A треугольник ABC данного периметра 2p.

   Решение

Задачи

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 484]      



Задача 57227

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 4
Классы: 8,9

Постройте треугольник ABC, зная положение трех точек  A1, B1, C1, являющихся центрами вневписанных окружностей треугольника ABC.
Прислать комментарий     Решение


Задача 57232

Тема:   [ Треугольник (построения) ]
Сложность: 4
Классы: 8,9

Впишите в данный треугольник ABC прямоугольник PQRS (вершины R и Q лежат на сторонах AB и BCP и S — на стороне AC) так, чтобы его диагональ имела данную длину.
Прислать комментарий     Решение


Задача 57233

Тема:   [ Треугольник (построения) ]
Сложность: 4
Классы: 8,9

Проведите через данную точку M прямую так, чтобы она отсекала от данного угла с вершиной A треугольник ABC данного периметра 2p.
Прислать комментарий     Решение


Задача 57234

Тема:   [ Треугольник (построения) ]
Сложность: 4
Классы: 8,9

Постройте треугольник ABC по медиане mc и биссектрисе lc, если  $ \angle$C = 90o.
Прислать комментарий     Решение


Задача 57242

Тема:   [ Четырехугольники (построения) ]
Сложность: 4
Классы: 8,9

Через вершину A выпуклого четырехугольника ABCD проведите прямую, делящую его на две равновеликие части.
Прислать комментарий     Решение


Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 484]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .