ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Сетка линий, изображённая на рисунке, состоит из концентрических окружностей с радиусами 1, 2, 3, 4,... и центром в точке О, прямой l, проходящей через точку О, и всевозможных касательных к окружностям, параллельных l. Вся плоскость разбита этими линиями на клетки, которые раскрашены в шахматном порядке. В цепочке точек, показанных на рисунке, каждые две соседние точки являются противоположными вершинами тёмной клетки. Докажите, что все точки такой бесконечной цепочки лежат на одной параболе (поэтому рисунок словно соткан из светлых и тёмных парабол).

Вниз   Решение


a, b и c - длины сторон произвольного треугольника. Докажите, что  a = y + z, b = x + z и c = x + y, где x, y и z — положительные числа.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 841]      



Задача 54025

Тема:   [ Против большей стороны лежит больший угол ]
Сложность: 2
Классы: 8,9

Докажите, что отрезок, соединяющий вершину равнобедренного треугольника с точкой, лежащей на основании, не больше боковой стороны треугольника.

Прислать комментарий     Решение


Задача 55146

Тема:   [ Неравенство треугольника (прочее) ]
Сложность: 2
Классы: 8,9

У равнобедренного треугольника стороны равны 3 и 7. Какая из сторон является основанием?

Прислать комментарий     Решение


Задача 57304

Тема:   [ Неравенства с медианами ]
Сложность: 2
Классы: 8

Докажите, что  (a + b - c)/2 < mc < (a + b)/2, где a, b и c - длины сторон произвольного треугольника, mc - медиана к стороне c.
Прислать комментарий     Решение


Задача 57309

Тема:   [ Алгебраические задачи на неравенство треугольника ]
Сложность: 2
Классы: 8

a, b и c - длины сторон произвольного треугольника. Докажите, что  a = y + z, b = x + z и c = x + y, где x, y и z — положительные числа.
Прислать комментарий     Решение


Задача 57310

Тема:   [ Алгебраические задачи на неравенство треугольника ]
Сложность: 2
Классы: 8

a, b и c - длины сторон произвольного треугольника. Докажите, что  a2 + b2 + c2 < 2(ab + bc + ca).
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 841]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .