Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Сходимость итерационного процесса. Предположим, что функция f (x) отображает отрезок [a;b] в себя, и на этом отрезке | f'(x)| $ \leqslant$ q < 1. Докажите, что уравнение f (x) = x имеет на отрезке [a;b] единственный корень x*. Докажите, что при решении этого уравнения методом итераций будут выполняться неравенства:

| xn + 1 - xn| $\displaystyle \leqslant$ | x1 - x0| . qn,    | x* - xn| $\displaystyle \leqslant$ | x1 - x0| . $\displaystyle {\frac{q^n}{1-q}}$.


Вниз   Решение


Найти последнюю цифру числа  71988 + 91988.

ВверхВниз   Решение


Доказать, что если расстояния между скрещивающимися рёбрами тетраэдра равны h1, h2, h3, то объём тетраэдра не меньше, чем h1h2h3/3.

ВверхВниз   Решение


В угол вписаны три окружности $\Gamma_1$, $\Gamma_2$, $\Gamma_3$ (радиус $\Gamma_1$ наименьший, а радиус $\Gamma_3$ наибольший), притом $\Gamma_2$ касается $\Gamma_1$ и $\Gamma_3$ в точках $A$ и $B$ соответственно. Пусть $l$ – касательная в точке $A$ к $\Gamma_1$. Рассмотрим все окружности $\omega$, касающиеся $\Gamma_1$ и $l$. Найдите геометрическое место точек пересечения общих внутренних касательных к парам окружностей $\omega$ и $\Gamma_3$.

ВверхВниз   Решение


Внутри квадрата со стороной 1 расположено n2 точек. Докажите, что существует ломаная, содержащая все эти точки, длина которой не превосходит 2n.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 10]      



Задача 79403

Темы:   [ Ломаные внутри квадрата ]
[ Принцип Дирихле (углы и длины) ]
[ Ортогональная (прямоугольная) проекция ]
[ Неравенство треугольника (прочее) ]
Сложность: 4
Классы: 8,9,10

В квадрате со стороной длины 1 расположена ломаная без самопересечений, длина которой не меньше 200. Доказать, что найдётся прямая, параллельная одной из сторон квадрата, пересекающая ломаную не менее чем в 101-й точке.
Прислать комментарий     Решение


Задача 115684

Темы:   [ Ломаные внутри квадрата ]
[ Средняя линия трапеции ]
Сложность: 4
Классы: 8,9

В квадрате ABCD на сторонах AB и CD взяты точки M и N . Отрезки CM и BN пересекаются в точке P , а отрезки AN и DM — в точке Q . Докажите, что PQ AB .
Прислать комментарий     Решение


Задача 57364

Тема:   [ Ломаные внутри квадрата ]
Сложность: 4+
Классы: 8,9

Внутри квадрата со стороной 1 расположена несамопересекающаяся ломаная длины 1000. Докажите, что найдется прямая, параллельная одной из сторон квадрата, пересекающая эту ломаную по крайней мере в 500 точках.
Прислать комментарий     Решение


Задача 57365

Тема:   [ Ломаные внутри квадрата ]
Сложность: 5
Классы: 8,9

В квадрате со стороной 1 расположена ломаная длиной L. Известно, что каждая точка квадрата удалена от некоторой точки этой ломаной меньше чем на  $ \varepsilon$. Докажите, что тогда  L $ \geq$ $ {\frac{1}{2\varepsilon }}$ - $ {\frac{\pi\varepsilon }{2}}$.
Прислать комментарий     Решение


Задача 57366

Тема:   [ Ломаные внутри квадрата ]
Сложность: 5
Классы: 8,9

Внутри квадрата со стороной 1 расположено n2 точек. Докажите, что существует ломаная, содержащая все эти точки, длина которой не превосходит 2n.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .