ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Сходимость итерационного процесса.
Предположим, что функция f (x) отображает отрезок [a;b] в
себя, и на этом отрезке
| f'(x)|
| xn + 1 - xn|
Найти последнюю цифру числа 71988 + 91988. Доказать, что если расстояния между скрещивающимися рёбрами тетраэдра равны h1, h2, h3, то объём тетраэдра не меньше, чем h1h2h3/3. В угол вписаны три окружности $\Gamma_1$, $\Gamma_2$, $\Gamma_3$ (радиус $\Gamma_1$ наименьший, а радиус $\Gamma_3$ наибольший), притом $\Gamma_2$ касается $\Gamma_1$ и $\Gamma_3$ в точках $A$ и $B$ соответственно. Пусть $l$ – касательная в точке $A$ к $\Gamma_1$. Рассмотрим все окружности $\omega$, касающиеся $\Gamma_1$ и $l$. Найдите геометрическое место точек пересечения общих внутренних касательных к парам окружностей $\omega$ и $\Gamma_3$. Внутри квадрата со стороной 1 расположено n2
точек. Докажите, что существует ломаная, содержащая все эти точки,
длина которой не превосходит 2n.
|
Страница: 1 2 >> [Всего задач: 10]
В квадрате со стороной длины 1 расположена ломаная без самопересечений, длина которой не меньше 200. Доказать, что найдётся прямая, параллельная одной из сторон квадрата, пересекающая ломаную не менее чем в 101-й точке.
В квадрате ABCD на сторонах AB и CD взяты
точки M и N . Отрезки CM и BN пересекаются
в точке P , а отрезки AN и DM — в точке Q .
Докажите, что PQ
Внутри квадрата со стороной 1 расположена
несамопересекающаяся ломаная длины 1000. Докажите, что
найдется прямая, параллельная одной из сторон квадрата,
пересекающая эту ломаную по крайней мере в 500 точках.
В квадрате со стороной 1 расположена ломаная
длиной L. Известно, что каждая точка квадрата удалена от
некоторой точки этой ломаной меньше чем на
Внутри квадрата со стороной 1 расположено n2
точек. Докажите, что существует ломаная, содержащая все эти точки,
длина которой не превосходит 2n.
Страница: 1 2 >> [Всего задач: 10]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке