Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Выразите площадь треугольника ABC через длину стороны BC и величины углов B и C.

Вниз   Решение


Биссектриса треугольника делит одну из его сторон на отрезки 3 см и 5 см. В каких границах изменяется периметр треугольника?

ВверхВниз   Решение


Равные хорды окружности с центром O пересекаются в точке M. Докажите, что MO – биссектриса угла между ними.

ВверхВниз   Решение


Автор: Мухин Д.Г.

Окружность касается боковых сторон трапеции $ABCD$ в точках $B$ и $C$, а её центр лежит на $AD$. Докажите, что диаметр окружности меньше средней линии трапеции.

ВверхВниз   Решение


Даны две пересекающиеся окружности радиуса R, причем расстояние между их центрами больше R. Докажите, что  β = 3α (рис.).


Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 5292]      



Задача 57584

Тема:   [ Теорема синусов ]
Сложность: 2
Классы: 9

Выразите площадь треугольника ABC через длину стороны BC и величины углов B и C.
Прислать комментарий     Решение


Задача 57633

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 2
Классы: 9

Даны две пересекающиеся окружности радиуса R, причем расстояние между их центрами больше R. Докажите, что  β = 3α (рис.).


Прислать комментарий     Решение

Задача 57651

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 2
Классы: 9

Найдите все треугольники, у которых углы образуют арифметическую прогрессию, а стороны: а) арифметическую прогрессию; б) геометрическую прогрессию.
Прислать комментарий     Решение


Задача 64792

Тема:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 2
Классы: 7,8

В равнобедренном треугольнике АВС угол В равен 30°,  АВ = ВС = 6.  Проведены высота CD треугольника АВС и высота DE треугольника BDC.
Найдите ВЕ.

Прислать комментарий     Решение

Задача 116136

Темы:   [ Подобные треугольники (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 10,11

Автор: Шноль Д.Э.

Kаждый из двух подобных треугольников разрезали на два треугольника так, что одна из получившихся частей одного треугольника подобна одной из частей другого треугольника. Bерно ли, что оставшиеся части также подобны?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 5292]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .